Skip to main content
Log in

Stimulated Raman scattering of self-focused elliptical q-Gaussian laser beam in plasma with axial density ramp: effect of ponderomotive force

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The phenomenon of stimulated Raman scattering (SRS) of elliptical q-Gaussian laser beams interacting nonlinearly with underdense plasmas has been investigated theoretically. When an intense laser beam with frequency \(\omega _0\) propagates through plasma, due to the nonuniform irradiance over its cross-section d.c component of ponderomotive force becomes active. Due to this ponderomotive nonlinearity of plasma, the laser beam gets coupled with a preexisting electron plasma wave (EPW) at frequency \(\omega _{ep}\). The nonlinear interaction of pump beam with EPW produces a back scattered wave at frequency \(\omega _s=\omega _0-\omega _{ep}\). Using variational theory semi-analytical solution of the set of coupled nonlinear wave equations for the three waves (pump, EPW and scattered) has been obtained under W.K.B approximation technique. It has been observed that power of the scattered wave is significantly affected by the self-focusing effect of pump beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. F. Winterberg, Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127 (2008)

    Article  ADS  Google Scholar 

  3. W.D. Phillips, Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  4. Y. Silberberg, I.B. Joseph, Optical instabilities in a nonlinear Kerr medium. J. Opt. Soc. Am. B 1, 662 (1984)

    Article  ADS  Google Scholar 

  5. C.S. Liu, V.K. Tripathi, Parametric instabilities in a magnetized plasma. Phys. Rep. 130, 143 (1986)

    Article  ADS  Google Scholar 

  6. P. Sharma, K. Avinash, D.N. Gupta, Parametric instabilities in strongly correlated plasma. Phys. Plasmas 23, 102704 (2016)

    Article  ADS  Google Scholar 

  7. N. Gupta, Second harmonic generation of q-Gaussian laser beam in plasma channel created by ignitor heater technique. Laser Part. Beams 37, 184 (2019)

    Article  ADS  Google Scholar 

  8. A. Singh, K. Walia, Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma. Appl. Phys. B 101, 617 (2010)

    Article  ADS  Google Scholar 

  9. N. Gupta, Self-action effects of quadruple-Gaussian laser beam in media possessing cubic quintic nonlinearity. J. Em. Waves Appl. 32, 2350 (2018)

    Article  Google Scholar 

  10. G. Eckhardt, R.W. Hellwarth, F.J. McClung, S.E. Schwarz, D. Weiner, E.J. Woodbury, Stimulated Raman Scattering from organic liquids. Phys. Rev. Lett. 9, 455 (1962)

    Article  ADS  Google Scholar 

  11. B.B. Afeyan, E.A. Williams, Unified theory of stimulated Raman scattering and two-plasmon decay in inhomogeneous plasmas: High frequency hybrid instability. Phys. Rev. Lett. 75, 4218 (1995)

    Article  ADS  Google Scholar 

  12. R.W. Hellwarth, Theory of stimulated Raman scattering. Phys. Rev. 130, 1850 (1963)

    Article  ADS  Google Scholar 

  13. G.G. Comisar, Theory of the stimulated Raman effect in plasmas. Phys. Rev. 141, 200 (1966)

    Article  ADS  Google Scholar 

  14. R.E. Turner, D.W. Phillion, E.M. Campbell, K.G. Estabrook, Time-resolved observations of stimulated Raman scattering from laser-produced plasmas. Phys. Fluids 26, 579 (1983)

    Article  ADS  Google Scholar 

  15. R.W. Short, W. Seka, R. Bahr, Stimulated Raman scattering in self- focused light filaments in laser-produced plasmas. Phys. Fluids 30, 3245 (1987)

    Article  ADS  Google Scholar 

  16. P.K. Patel, M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H.S. Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S.C. Wilks, B. Zhang, Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Controlled Fusion 47, B833 (2005)

    Article  Google Scholar 

  17. M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Freeman, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, P. Jaanimagi, M.H. Key, K. Krushelnick, T. Ma, A. MacPhee, A.J. MacKinnon, H. Nakamura, R.B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R.L. Weber, M.S. Wei, N.C. Woolsey, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)

    Article  Google Scholar 

  18. C. Tsallis, Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  19. A. Sharma, I. Kourakis, Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser Part. Beams 28, 479 (2010)

    Article  ADS  Google Scholar 

  20. N. Gupta, A. Singh, Effect of cross-focusing of two q-Gaussian laser beams on excitation of electron plasma wave in collisional plasma. Optik 127, 8542 (2016)

    Article  ADS  Google Scholar 

  21. N. Gupta, S. Kumar, Generation of second harmonics of q -Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)

    Article  ADS  Google Scholar 

  22. N. Gupta, Non-linear interaction of a q-Gaussian laser beam in a plasma channel created by the ignitor-heater technique. Cont. Plasma Phys. 59, 154 (2019)

    Article  ADS  Google Scholar 

  23. D. Anderson, M. Bonnedal , M. Lisak, ”Nonlinear propagation of elliptically shaped Gaussian laser beams,”23, 115 (1980)

  24. D. Anderson, M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Lindl, Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  26. G. Shvets, N.J. Fisch, A. Pukhov, J.M. Vehn, Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump. Phys. Rev. Lett. 81, 4879 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, S. & Bhardwaj, S.B. Stimulated Raman scattering of self-focused elliptical q-Gaussian laser beam in plasma with axial density ramp: effect of ponderomotive force. J Opt 51, 819–833 (2022). https://doi.org/10.1007/s12596-021-00822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00822-8

Navigation