Skip to main content
Log in

Quantum Phase and Nonlocal Correlations for a Three-Level System Interacting with Laser Light in a Nonlinear Kerr Medium Under Decoherence

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we study the time evolution of the geometric phase and nonlocal correlations for a three-level atom interacting with the quantum field emerged in a nonlinear Kerr medium. We discuss the dependence of the physical quantifiers on the phase damping effect. We examine the effects of the initial state and different system parameters on the evolution of the nonlocal correlation and geometric phase with and without the phase damping effect. Furthermore, we explore the link between the geometric phase and the nonlocal correlation during the time evolution. Finally, we show that the model proposed will be very useful to avoid the phase damping effect by a proper choice of the physical parameters in the field for both cases of the initial pure and mixed states of the three-level atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Pancharatnam, Proc. Indian Acad. Sci. A, 44, 217 (1956).

    MathSciNet  Google Scholar 

  2. Q. V. Lawande, S. V. Lawande, and A. Joshi, Phys. Lett. A, 251, 164 (1999).

    Article  ADS  Google Scholar 

  3. B. Simon, Phys. Rev. Lett., 51, 2167 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Facchi and S. Pascazio, Acta Phys. Slovaca, 49, 677 (1999).

    Google Scholar 

  5. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  6. E. Schrdinger, Proc. Camb. Phil. Soc., 31, 555 (1935).

    Article  ADS  Google Scholar 

  7. M. A. Nielsen and I. L. Chuang, Quantum Computation and Information, Cambridge University Press (2000).

  8. J. Bell, Physics, 1, 195 (1964).

    Google Scholar 

  9. J. Clauser, M. Horne, A. Shimony, and R. Holt, Phys. Rev. Lett., 23, 880 (1969).

    Article  ADS  Google Scholar 

  10. S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A, 78, 063828 (2008).

    Article  ADS  Google Scholar 

  11. W. K. Wootters, Quantum Inform. Comput., 1, 27 (2001).

    Google Scholar 

  12. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A, 53, 2046 (1996).

    Article  ADS  Google Scholar 

  13. S. Popescu and D. Rohrlich, Phys. Rev. A, 56, R3319 (1997).

    Article  ADS  Google Scholar 

  14. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A, 58, 883 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  15. K. Berrada, Phys. Rev. A, 88, 013817 (2013).

    Article  ADS  Google Scholar 

  16. K. Berrada, S. Abdel Khalek, and C. H. Raymond Ooi, Phys. Rev. A, 86, 033823 (2012).

    Article  ADS  Google Scholar 

  17. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys., 80, 517 (2008).

    Article  ADS  Google Scholar 

  18. Theo M Nieuwenhuizen, Claudia Pomb, Claudio Furtado, et al., Quantum Foundations and Open Quantum Systems, World Scientific, Singapore (2014).

  19. V. I. Man’ko, G. Marmo, and F. Zaccaria, in: N. M. Atakishiyev, T. H. Seligman and K. B. Wolf (Eds.), Proceedings of the 4th Wigner Symposium, World Scientific, Singapore (1996), p. 421.

  20. R. L. de Matos Filho and W. Vogel, Phys. Rev. A, 54, 4560 (1996).

    Article  ADS  Google Scholar 

  21. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Scr., 55, 528 (1997).

    Article  ADS  Google Scholar 

  22. O. de los Santos-Sánchez and J. Récamier, J. Phys. B: At. Mol. Opt. Phys., 45, 015502 (2012).

  23. T. A. Osborn and M. Karl-Peter, J. Phys. A: Math. Theor., 42, 415302 (2009).

    Article  Google Scholar 

  24. V. I. Man’ko, G. Marmo, and F. Zaccaria, Phys. Scr., 81, 045004 (2010).

    Article  ADS  Google Scholar 

  25. K. Berrada, Laser Phys., 24, 1 (2014).

    Article  ADS  Google Scholar 

  26. S. B. Abdel-Khalek, K. B. Berrada, and Sadah B. A. B. Alkhateeb, Laser Phys., 26, 095201 (2016).

  27. D. F. Walls and G. J. Milburn, Quantum Optics, Springer Verlag, Berlin (1994).

    Book  MATH  Google Scholar 

  28. Le-Man Kuang, Xin Chen, Guang-Hong Chen, and Ge Mo-Lin, Phys. Rev. A, 56, 3139 (1997).

    Article  ADS  Google Scholar 

  29. H.-P. Breuer, U. Dorner, and F. Petruccione, Comput. Phys. Comm., 132, 30 (2000).

    Article  ADS  Google Scholar 

  30. I. L. Chuang and Y. Yamamoto, Phys. Rev. A, 55, 114 (1997).

    Article  ADS  Google Scholar 

  31. R. R. Puri, Mathematival Methods of Quantum Optics, Springer, Berlin (2001).

    Book  Google Scholar 

  32. C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics, Hardcover (2004).

  33. D. M. Tong, E. Sjöqvist, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett., 93, 080405 (2004); Erratum: ibid, 95, 249902 (2005).

  34. A. Bassi and E. Ippoliti, Phys. Rev. A, 73, 062104 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  35. N. Burić and M. Radonjić, Phys. Rev. A, 80, 014101 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Bhandari, Phys. Rev. Lett., 89, 268901 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Sjöqvist, Phys. Rev. A, 70, 052109 (2004).

    Article  ADS  Google Scholar 

  38. R. Bhandari, Phys. Rep., 281, 1 (1997).

    Article  ADS  Google Scholar 

  39. D. M. Tong, E. Sjöqvist, L. C. Kwek, and C. H. Oh, Phys. Rev. Lett., 93, 080405 (2004).

    Article  ADS  Google Scholar 

  40. G. Vidal and R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berrada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrada, K., Abdel-Khalek, S. Quantum Phase and Nonlocal Correlations for a Three-Level System Interacting with Laser Light in a Nonlinear Kerr Medium Under Decoherence. J Russ Laser Res 38, 124–133 (2017). https://doi.org/10.1007/s10946-017-9626-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9626-8

Keywords

Navigation