Skip to main content
Log in

Comparison of Solutions of the General Nonlinear Amplitude Equation and a Modified Schrӧdinger Equation

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We review the dynamics of narrow and broad-band optical pulses in nonlinear dispersive media. A major problem that arises during the development of theoretical models, which describe accurately and correctly the behavior of these pulses, is the limited application of the nonlinear Schrӧdinger equation. It describes very well the evolution of nanosecond and picosecond laser pulses. However, when we investigate the propagation of femtosecond and attosecond light pulses, it is necessary to use the more general nonlinear amplitude equation. We show that in this equation two additional terms are included and they have a significant impact on the phase of the pulse. We perform numerical simulations and show the temporal shift of the position of fundamental solitons. This effect depends on the initial duration of the laser pulses. To clarify the influence of the additional terms on the parameters of the optical pulses, we consider the nonlinear amplitude equation, which is a modified nonlinear Schrӧdinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., Academic Press, New York (2007).

    MATH  Google Scholar 

  2. R. W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, San Diego (2003).

    Google Scholar 

  3. A. M. Dakova, D. Y. Dakova, and L. Kovachev, “Comparison of soliton solutions of the nonlinear Schrӧdinger equation and the nonlinear amplitude equation,” in: The 18th International School on Quantum Electronics: Laser Physics and Applications (Sozopol, Bulgaria, 29 September – 3 October 2014), Proc. SPIE, 9447, 94471A (2015).

  4. A. Hasegawa and F. Tappert, Appl. Phys. Lett., 23, 142 (1973).

    Article  ADS  Google Scholar 

  5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP, 34, 62 (1972).

    ADS  MathSciNet  Google Scholar 

  6. J. S. Aitchison, A. M. Weiner, Y. Silberberg, et al., J. Opt. Soc. Am. B, 8, 1290 (1991).

    Article  ADS  Google Scholar 

  7. A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Commun., 55, 201 (1985).

    Article  ADS  Google Scholar 

  8. S. A. Akhmanov, Yu. E. Dyakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics [in Russian], Nauka, Moscow (1981).

  9. L. Kovachev and K. Kovachev, “Linear and nonlinear femtosecond optics in isotropic media. Ionization-free filamentation,” Laser Pulses, Book 1, InTech Publisher, Rijeka, Croatia (2011).

  10. F. Abdullaev, S. A. Darmanian, and P. Khabibullaev, Optical Solitons, Springer, London, Berlin (1993).

    Book  Google Scholar 

  11. N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Vibrations [in Russian], GITTL, Moscow (1955).

  12. K. A. Gorshkov, L. A. Ostrovsky, and V. V. Papko, Sov. Phys. JETP, 44, 306 (1976).

    ADS  Google Scholar 

  13. D. Dakova, “Method of small parameter approximation in analyzing the propagation and interaction of soliton-like pulses,” Proc. SPIE, 6604, 66041O(5) (2007).

  14. V. L. Karpman and V. V. Solov‘ev, Physica D, 3, 487 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. S. Gerdgikov, I. M. Uzunov, E. G. Evstatiev, and G. L. Diankov, Phys. Rev. E, 55, 6039 (1997).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakova, A.M., Dakova, D.Y., Kovachev, L.M. et al. Comparison of Solutions of the General Nonlinear Amplitude Equation and a Modified Schrӧdinger Equation. J Russ Laser Res 37, 155–163 (2016). https://doi.org/10.1007/s10946-016-9555-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9555-y

Keywords

Navigation