Skip to main content
Log in

Tunable Filter Based upon Thue–Morse Photonic Crystal Structures

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Thue-Morse structures are quasicrystals that can provide omni-directional reflectance and light emission enhancement. Starting from a Thue–Morse structure made of alternating layers of air and InP, we analyze the effects of adding a defect to the structure and changing the incidence angle on the response of the device. In fact, we show that the resonance wavelength can be tuned by adequate control of the angle of incidence of the incoming electromagnetic wave. The modified device has nearly 100% transmissivity and quality factor above 3,000, with a total length of less than 3.449 μm. The device may find applications in optical switching and filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Asano, M. Mochizuki, S. Noda, et al., J. Lightwave Technol., 21, 1370 (2003).

    Article  ADS  Google Scholar 

  2. F. Tayeboun, K. A. Meradi, H. M. Tayeboun, et al., J. Russ. Laser Res., 33, 240 (2012).

    Article  Google Scholar 

  3. R. Costa, A. Melloni, and M. Martinelli, IEEE Photon. Technol. Lett., 15, 401 (2003).

    Article  ADS  Google Scholar 

  4. P. T. Lee, J. R. Cao, S. J. Choi, et al., Appl. Phys. Lett., 81, 3311 (2002).

    Article  ADS  Google Scholar 

  5. H. T. Hattori, I. McKerracher, H. H. Tan, et al., IEEE J. Quantum Electron., 43, 279 (2007).

    Article  ADS  Google Scholar 

  6. K. Inoshita and T. Baba, Electron. Lett., 39, 844 (2003).

    Article  Google Scholar 

  7. N. Yokouchi, A. J. Danner, and K. D. Choquette, Appl. Phys. Lett., 82, 3608 (2003).

    Article  ADS  Google Scholar 

  8. S. Fan, S. G. Johnson, J. D. Joannopoulos, et al., J. Opt. Soc. Am. B, 18, 162 (2001).

    Article  ADS  Google Scholar 

  9. K. A. Meradi, F. Tayeboun, S. Ghezali, et al., J. Russ. Laser Res., 32, 572 (2011).

    Article  Google Scholar 

  10. Y. G. Roh, S. Yoon, S. Kim, et al., Appl. Phys. Lett., 83, 231 (2003).

    Article  ADS  Google Scholar 

  11. H. C. Nguyen, N. Yazawa, S. Hashimoto, et al., IEEE Select. Top. Quantum Electron., 19, 6544614 (2013).

    Google Scholar 

  12. H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, Opt. Express, 20, 22465 (2012).

    Article  ADS  Google Scholar 

  13. S. Hachuda, S. Otsuka, S. Kita, et al., Opt. Express, 21, 12815 (2013).

    Article  ADS  Google Scholar 

  14. D. F. Dorfner, T. Hurlimann, T. Zabel, et al., Appl. Phys. Lett., 93, 181103 (2008).

    Article  ADS  Google Scholar 

  15. R. M. Cazo, O. Lisboa, H. T. Hattori, et al., Microwave Opt. Technol. Lett., 28, 4 (2001).

    Article  Google Scholar 

  16. S. M. Melle, K. Liu, and R. M. Measures, IEEE Photon. Technol. Lett., 4516-518 (1992).

  17. D. Levine and P. J. Steinhardt, Phys. Rev. Lett., 53, 2477 (1984).

    Article  ADS  Google Scholar 

  18. Z. M. Stadnik, Physical Properties of Quasicrystals, Springer, New York (1999).

    Book  Google Scholar 

  19. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, et al., Nature, 404, 740 (2000).

    Article  ADS  Google Scholar 

  20. Y. S. Chan, C. T. Chan, and Z. Y. Liu, Phys. Rev. Lett., 80, 956 (1988).

    Article  ADS  Google Scholar 

  21. S. S. M. Cheng, L. Li, C. T. Chan, and Z. Q. Zhang, Phys. Rev. B, 95, 4091 (1999).

    Article  ADS  Google Scholar 

  22. C. Jin, B. Cheng, B. Man, et al., Appl. Phys. Lett., 75, 1848 (1999).

    Article  ADS  Google Scholar 

  23. W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng, J. Opt. Soc. Am. B, 28, 2584 (2011).

    Article  ADS  Google Scholar 

  24. V. Agarwal, J. A. Soto-Urueta, D. Becerra, and M. E. Mora-Ramos, Photon. Nanostruct., 3, 155 (2005).

    Article  ADS  Google Scholar 

  25. S. Zirak-Gharamaleki, Opt. Commun., 284, 579 (2011).

    Article  ADS  Google Scholar 

  26. X. Jiang, Y. Zhang, S. Feng, et al., Appl. Phys. Lett., 86, 201110 (2005).

    Article  ADS  Google Scholar 

  27. L. Dal Negro, J. H. Yi, V. Nguyen, et al., Appl. Phys. Lett., 86, 261905 (2005).

    Article  ADS  Google Scholar 

  28. A. Pectu and L. Preda, Roman. J. Phys., 54, 539 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Meradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meradi, K.A., Tayeboun, F. Tunable Filter Based upon Thue–Morse Photonic Crystal Structures. J Russ Laser Res 36, 364–370 (2015). https://doi.org/10.1007/s10946-015-9511-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9511-2

Keywords

Navigation