Skip to main content
Log in

HTSC Maglev Systems for IFE Target Transport Applications

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A challenge in inertial fusion energy (IFE) research is to deliver the target to the target chamber center at a high repetition rate. Therefore, the problem of target fabrication and delivery is focused on methods that scale to highly repeatable and cost-effective target production. In this paper, we investigate the possibility of using magnetic-levitation (maglev) transport systems for noncontact manipulation, positioning, and delivery of the cryogenic targets. We focus on the development of transport systems based on movement of high-temperature superconductors (HTSC) over a permanent magnet guideway (PMG). Active guidance is achieved using the HTSC ceramics YBa2Cu3O7 X and PMG, where an ordered motion is initiated by a special arrangement of the permanent magnets. At present, significant R&D programs are ongoing in order to fulfill the technical requirements and basic elements of the system’s operation as a maglev target accelerator. We present here the main results of this work along with recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Aleksandrova, S. V. Bazdenkov, V. I. Chtcherbakov, et al., J. Phys. D: Appl. Phys., 37, 1163 (2004).

    Article  ADS  Google Scholar 

  2. E. R. Koresheva, I. E. Osipov, and I. V. Aleksandrova, Laser Part. Beams, 23, 563 (2005).

    Article  ADS  Google Scholar 

  3. I. E. Osipov, E. R. Koresheva, G. D. Baranov, et al., “A device for cryotarget rep-rate delivery in IFE target chamber,” in: Inertial Fusion Science and Application, State of the Art 2001, Elsevier, Amsterdam (2002), p. 810.

  4. I. V. Aleksandrova, E. R. Koresheva, E. L. Koshelev, and I. E. Osipov, Plasma Fusion Res., Jpn Soc. Plasma Sci. Nucl. Fusion Res., 8, 3404052 (2013).

    Article  ADS  Google Scholar 

  5. B. V. Kuteev, “Interaction of cover and target with xenon gas in the IFE-reaction chamber,” Research Report NIFS-718, National Institute for Fusion Science, Nagoya, Japan (2001).

    Google Scholar 

  6. G. D. Baranov, E. R. Koresheva, I. E. Osipov, et al., “Design of a special sabot for IFE target acceleration inside the coil & gas gun,” Contribution to the Second IAEA TCM on Physics and Technology of IFE Targets and Chambers (June 17–19, 2002, San Diego, CA, USA).

  7. E. R. Koresheva, I. V. Aleksandrova, I. E. Osipov, et al., Fusion Sci. Technol., 43, 290 (2003).

    Google Scholar 

  8. E. R. Koresheva, I. E. Osipov, S. M. Tolokonnikov, et al., Problems of Atomic Science and Technology, Ser. Termonuclear Fusion (2004), Vol. 2, p. 11 [in Russian]; http://vant.iterru.ru/vant 2004 2/2.pdf

  9. I. Aleksandrova, A. Belolipetskiy, E. Koresheva, et al., J. Russ. Laser Res., 29, 419 (2008).

    Article  Google Scholar 

  10. R. D. Kreutz, Fusion Technol., 8, 2708 (1988).

    Google Scholar 

  11. L. Carlson, K. Friend, D. Goodin, et al., “Progress in electrostatic target acceleration,” Contribution to the 19th HAPL Program Workshop (Madison, USA, October 22–23, 2008).

  12. H. Yoshida and Y. Yamahira, Rev. Laser Eng., 32, 343 (2005).

    Article  Google Scholar 

  13. D. T. Goodin, N. B. Alexander, L. C. Brown, et al., Nucl. Fusion, 44, S254 (2004).

    Article  ADS  Google Scholar 

  14. E. R. Koresheva, I. E. Osipov, and I. V. Aleksandrova, J. Moscow Phys. Soc., 4, 183 (1994).

    Google Scholar 

  15. O. Komeda, Y. Nishimura, Y. Mori, et al., Plasma Fusion Res.: Rapid Commun., 8, 1205020 (2013).

    Google Scholar 

  16. I. V. Aleksandrova, A. I. Gromov, O. M. Ivanenko, et al., “Studies on different possibilities for target elements assembly, manipulation, and positioning for fusion energy experiment,” Contribution to the XL International Conference on Plasma Physics and Controlled Thermonuclear Fusion (Zvenigorod, Moscow Region, RF, February 11–15, 2013); http://www.fpl.gpi.ru/Zvenigorod/XL/I.html#SekcijaI

  17. I. V. Aleksandrova, A. A. Belolipetskiy, V. A. Kalabukhov, et al., “High-rep-rate free-standing target supply system for HiPER,” Report WS-100-32 at the SPIE Laser Energy Workshop (Prague, Czech Republic, April 18, 2013), Book of Abstracts (2013), p. 183.

  18. R. W. Petzoldt, D. T. Goodin, A. Nikroo, et al., Nucl. Fusion, 42, 1351 (2002).

    Article  ADS  Google Scholar 

  19. W. R. Meier, Fusion Eng. Des., 25, 145 (1994).

    Article  Google Scholar 

  20. S. W. Haan, D. A. Callahan, M. J. Edwards, et al., Fusion Sci. Technol., 55, 227 (2009).

    Google Scholar 

  21. D. R. Harding, L. M. Elasky, S. Verbridge, et al., LLE Rev., 99, 160 (2004).

    Google Scholar 

  22. R. Kreutz, “Basis and concepts for the electromagnetic acceleration of pellets for injection into inertial confinement fusion reactor chambers,” Preprint KfK 3465, Institute fur Neutronenphysik und Reaktortechnik, Kernforschungszentrum, Karlsruhe, Germany (1983).

  23. T. Kassai and R. Tsuji, J. Phys.: Conf. Ser., 112, 032047-(1) (2008).

    ADS  Google Scholar 

  24. H. Yoshida, H. Kato, and F. Mayumi, “Model experiments of low-temperature magnetic injector,” Contribution to the Third IAEA Technical Meeting on Physics and Technology of IFE Targets and Chambers (Daejon, Republic of Korea, October 11–13, 2004).

  25. A. I. Golovashkin, V. A. Danilov, O. M. Ivanenko, et al., JETP Lett., 46, 343 (1987).

    ADS  Google Scholar 

  26. C. W. Chu, P. H. Hor, R. L. Meng, et al., Phys. Rev. Lett., 58, 405 (1987).

    Article  ADS  Google Scholar 

  27. I. V. Aleksandrova, E. R. Koresheva, I. E. Osipov, et al., Fusion Sci. Technol., 63, 106 (2013).

    Google Scholar 

  28. E. Koresheva, “Status of the FST technologies for HiPER targets: Results of mathematical modeling & mock-ups testing,” Contribution to the Third European Target Fabrication Workshop (29 September – 1 October 2010, Oxford, UK).

  29. I. V. Aleksandrova, A. A. Belolipetskiy, V. A. Kalabuhov, et al., Proc. SPIE, 8080, 80802 M (2011).

    Article  Google Scholar 

  30. C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., Freeman & Co., New York (1980).

    Google Scholar 

  31. M. V. Kartsovnik, V. A. Larkin, V. V. Ryazanov, et al., Pis’ma Zh. ’ Exp. Teor. Fiz., 47, 595 (1988).

    ADS  Google Scholar 

  32. A. I. Bykov, M. I. Dorotenko, C. M. Fowler, et al., Physica B, 211, 248 (1995).

    Article  ADS  Google Scholar 

  33. D. T. Goodin, N. B. Alexander, C. R. Gibson, et al., Nucl. Fusion, 41, 527 (2001).

    Article  ADS  Google Scholar 

  34. E. R. Koresheva, I. V. Aleksandrova, E. L. Koshelev, et al., Laser Part. Beams, 27, 255 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Koresheva.

Additional information

Manuscript submitted by the authors in English on November 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koresheva, E.R., Aleksandrova, I.V., Ivanenko, O.M. et al. HTSC Maglev Systems for IFE Target Transport Applications. J Russ Laser Res 35, 151–168 (2014). https://doi.org/10.1007/s10946-014-9410-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-014-9410-y

Keywords

Navigation