Skip to main content
Log in

A lattice of electromagnetic solitons in a superlattice formed by a system of quantum dots

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Considering the Maxwell equations for the electromagnetic-field propagation in a solid with a three-dimensional superlattice of quantum dots linked by strong tunneling along one axis, we obtained a phenomenological equation in the form of the classical 2+1-dimensional sine-Gordon equation. Electrons were considered classically in the formalism of the Boltzmann kinetic equation for the distribution function. Solutions were obtained as a soliton lattice for the vector potential of the electric field. These lattices emerge as a consequence of the coherent change of the classical distribution function and the electric field generated by tunneling electrons in a system of quantum wells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  2. M. Voos, Ann. Telecommun., 43, 357 (1988).

    Google Scholar 

  3. K. A. Valiev and A. A. Kokin, Quantum Computers: Hopes and Reality [in Russian], Regular and Chaotic Dynamics Research and Development Center, Izhevsk (2001).

    Google Scholar 

  4. T. Tanamoto, Phys. Rev. A, 61, 022305 (2000).

    Google Scholar 

  5. E. M. Epshtein, Fiz. Tverd. Tela, 19, 3456 (1977).

    Google Scholar 

  6. A. A. Ignatov and Yu. A. Romanov, Fiz. Tverd. Tela, 17, 3388 (1975).

    Google Scholar 

  7. A. S. Davydov, Solitons in Molecular Systems, 2nd ed., Springer, New York (1990).

    MATH  Google Scholar 

  8. R. K. Dodd, J. C. Eilenbeck, J. D. Gibbon, and Y. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York (1984).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Field Theory [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Physical Kinetics [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  11. H. T. Grahn, K. Klitzing, K. Ploog, et al., Phys. Rev. B, 43, 12095 (1991).

    Article  ADS  Google Scholar 

  12. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevsky, Theory of Solitons [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  13. A. C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1985).

    Google Scholar 

  14. R. Bullough and P. Caudrey (eds.), Solitons, Springer, Berlin (1980).

    MATH  Google Scholar 

  15. V. F. Zaytsev and A. D. Polyanin, Handbook of Nonlinear Equations of Mathematical Physics. Exact Solutions [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Belonenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belonenko, M.B., Meshcheryakova, N.E. A lattice of electromagnetic solitons in a superlattice formed by a system of quantum dots. J Russ Laser Res 29, 49–56 (2008). https://doi.org/10.1007/s10946-008-0004-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-008-0004-4

Keywords

Navigation