Skip to main content
Log in

Laser near-field microscopy

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Three techniques of optical near-field microscopy are considered. In one of them a probe in the form of a nanosphere interacts with a solid surface. The second technique is a probeless one based on the Brewster reflection of a laser beam from the surface of a non-absorptive dielectric in the presence of foreign atoms at it. The third technique is based on the interaction of a probe molecule at the tip of a needle-shaped light guide with a metal surface under the conditions of enhanced Raman scattering. Optical dimensional and near-field resonances are shown to be of significant importance in the optics of nanostructure systems and in the near-field optical microscopy techniques. These resonances are formed under the interaction of atoms and nanoparticles in the optical radiation field. The theoretical description of the techniques of near-field optical microscopy is based on the nonlocal equations together with the constitutive ones. The form of the latter depends on the type of boundary-value problem. The theory of the transition layer is presented, which allows one to explain the numerous experiments on the Brewster reflection of light and accordingly to evaluate the potentialities of the theoretical approach applied in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter, North-Holland, Amsterdam (1982).

    Google Scholar 

  2. A. S. Davydov, Quantum Mechanics, 2nd ed., Pergamon Press, Oxford (1976).

    Google Scholar 

  3. J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett., 93, 077402 (2004).

    Google Scholar 

  4. J. I. Gonzalez, T. H. Lee, M. D. Barnes, et al., Phys. Rev. Lett., 93, 147402 (2004).

    Google Scholar 

  5. A. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, Wiley, New York (1975).

    Google Scholar 

  6. V. A. Malyshev and E. C. Jarque, J. Opt. Soc. Am. B, 14, 1167 (1997).

    ADS  Google Scholar 

  7. E. C. Jarque, V. A. Malyshev, and L. J. Roso, Mod. Opt., 44, 563 (1997).

    Article  ADS  Google Scholar 

  8. V. A. Malyshev and Kh. E. Konekhero, Opt. Spektrosk., 82, 630 (1997).

    Google Scholar 

  9. O. N. Gadomsky and Yu. V. Abramov, Opt. Spektrosk., 93, 953 (2002).

    Article  Google Scholar 

  10. O. N. Gadomsky and T. T. Idiatullov, Zh. ’Eksp. Teor. Fiz., 119, 1222 (2001).

    Google Scholar 

  11. O. N. Gadomsky and A. S. Kunitsyn, Zh. Prikl. Spektrosk., 67, 777 (2000).

    Google Scholar 

  12. V. V. Klimov and V. S. Letokhov, Phys. Rev. B, 62, 1639 (2000).

    Article  ADS  Google Scholar 

  13. O. N. Gadomsky and A. S. Kunitsyn, Opt. Spektrosk., 90, 321 (2001).

    Article  Google Scholar 

  14. O. N. Gadomsky and K. Yu. Moiseev, Opt. Spektrosk., 92, 613 (2002).

    Article  Google Scholar 

  15. M. Born and E. Wolf, Principles of Optics, 4th ed., Pergamon Press, Oxford (1969).

    Google Scholar 

  16. V. L. Berkovits, A. V. Gordeeva, and V. A. Kosobukin, Fiz. Tverd. Tela, 43, 985 (2001).

    Google Scholar 

  17. O. N. Gadomsky, Usp. Fiz. Nauk, 170, 1145 (2000).

    Article  Google Scholar 

  18. C. Kittel, Introduction to Solid State Physics, 5th ed., Wiley, New York (1976).

    Google Scholar 

  19. O. N. Gadomsky and K. K. Krutitsky, J. Opt. Soc. Am. B, 13, 1679 (1996).

    ADS  Google Scholar 

  20. O. N. Gadomsky and A. S. Kadochkin, Opt. Spektrosk., 91, 798 (2001).

    Article  Google Scholar 

  21. O. N. Gadomsky and A. S. Kadochkin, Opt. Spektrosk., 94, 489 (2003).

    Google Scholar 

  22. V. A. Kizel’, Reflection of Light [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  23. G. V. Rozenberg, Optics of Thin-Film Coatings [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

  24. D. V. Sivukhin, Dokl. Akad. Nauk, 36, 247 (1942).

    MathSciNet  Google Scholar 

  25. D. V. Sivukhin, Zh. ’Eksp. Teor. Fiz., 21, 367 (1951).

    Google Scholar 

  26. O. N. Gadomsky and S. V. Sukhov, Opt. Spektrosk., 89, 287 (2000).

    Article  Google Scholar 

  27. K. V. Krutitsky and S. V. Sukhov, J. Phys. B, 30, 5341 (1997).

    Article  ADS  Google Scholar 

  28. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York (1941).

    MATH  Google Scholar 

  29. R. Ruppin, J. Phys. Soc. Jpn, 58, 1446 (1989).

    Article  ADS  Google Scholar 

  30. J. M. Gerardy and M. Ausloos, Phys. Rev. B, 22, 4950 (1980).

    Article  ADS  Google Scholar 

  31. O. N. Gadomsky and A. S. Kadochkin, Zh. ’Eksp. Teor. Fiz., 124, 516 (2003).

    Google Scholar 

  32. Y. Inouye and S. Kawata, Opt. Lett., 19, 159 (1994).

    ADS  Google Scholar 

  33. R. Bachelot, P. Gleyzes, and A. C. Boccara, Opt. Lett., 20, 1924 (1995).

    Article  ADS  Google Scholar 

  34. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, et al., Appl. Phys. Lett., 62, 461 (1992).

    Article  Google Scholar 

  35. A. Kawata, Y. Inouye, and S. Siguira, Jpn. J. Appl. Phys., 33, L1725 (1994).

    Google Scholar 

  36. R. Hillenbrand and F. Keilmann, Appl. Phys. Lett., 79, 25 (2001).

    Google Scholar 

  37. M. Specht, J. D. Pedaring, W. M. Heckl, and T. W. Hansch, Phys. Rev. Lett., 68, 476 (1992).

    Article  ADS  Google Scholar 

  38. B. Knoll and F. Keilmann, Opt. Commun., 182, 321 (2000).

    Article  ADS  Google Scholar 

  39. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1960).

    MATH  Google Scholar 

  40. V. M. Fain and Ya. I. Khanin, Quantum Electronics, Vols. 1 and 2, MIT Press, Cambridge, Mass. (1968).

    Google Scholar 

  41. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, Van Nostrand Reinhold, New York (1993).

    Google Scholar 

  42. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).

    Google Scholar 

  43. R. Hillenbrand, T. Taubner, and F. Keilmann, Nature, 418, 159 (2002).

    Article  ADS  Google Scholar 

  44. M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A., 62, 115 (1996).

    ADS  Google Scholar 

  45. S. V. Sukhov, Opt. Spectrosk., 95, 498 (2003).

    Google Scholar 

  46. S. V. Sukhov, Ultramicroscopy, 101, 111 (2004).

    Article  Google Scholar 

  47. A. M. Bonch-Bruevich, T. A. Vartanyan, N. B. Leonov, et al., Opt. Spectrosk., 89, 438 (2000).

    Article  Google Scholar 

  48. O. N. Gadomskii and A. S. Kadochkin, Opt. Spectrosk., 96, 646 (2004).

    Google Scholar 

  49. G. P. M. Poppe, C. M. J. Wijers, and A. van Silfhout, Phys. Rev. B, 44, 7917 (1991).

    Article  ADS  Google Scholar 

  50. V. S. Gorelik, O. N. Gadomsky, and A. S. Kunitsyn, Pis’ma Zh. ’Eksp. Teor. Fiz., 80, 197 (2004).

    Google Scholar 

  51. R. K. Chang and T. E. Furtak (eds.), Surface Enhanced Raman Scattering, Plenum Press, New York (1982).

    Google Scholar 

  52. S. K. Sekatskii and V. S. Letokhov, Pis’ma Zh. ’Eksp. Teor. Fiz., 65, 441 (1997).

    Google Scholar 

  53. O. N. Gadomskii and K. Yu. Moiseev, Opt. Spectrosk., 93, 163 (2002).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadomsky, O.N., Gorelik, V.S. & Kadochkin, A.S. Laser near-field microscopy. J Russ Laser Res 27, 225–300 (2006). https://doi.org/10.1007/s10946-006-0011-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0011-2

Keywords

Navigation