Skip to main content

Scanning Near-Field Optical Microscopy for Investigations of Bio-Matter

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

  • 2485 Accesses

Abstract

Optical near-fields can be employed for a wide range of applications, e.g., light localization, light scattering, and field enhancement. In this chapter the principles of near-field scanning optical microscopy (NSOM) will be outlined. The basic idea of this technique is the extension of the bandwidth of accessible spatial frequencies beyond the limits of conventional light microscopy. This strategy has been implemented in different ways. By now this technique covers a broad spectrum of optical contrasts. Here, special attention is turned on the high-resolution spectroscopic imaging of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Synge EH (1928) A suggested model for extending microscopic resolution into the ultra-microscopic region. Philos Mag 6:356–362

    CAS  Google Scholar 

  2. O’Keefe JA (1956) Resolving power of visible light. J Opt Soc Am 46:359

    Google Scholar 

  3. Baez AV (1956) Is resolving power independent of wavelength possible? An experiment with a sonic ‘macroscope’. J Opt Soc Am 46:901

    Google Scholar 

  4. McCutchen CW (1967) Superresolution in microscopy and the abbe resolution limit. J Opt Soc Am 57:1190–1192

    CAS  PubMed  Google Scholar 

  5. Massey GA (1984) Microscopy and pattern generation with scanned evanescent waves. Appl Opt 23:658–660

    CAS  PubMed  Google Scholar 

  6. Wessel J (1985) Surface-enhanced optical microscopy. J Opt Soc Am B 2:1538–1540

    CAS  Google Scholar 

  7. Ash EA, Nicholls G (1972) Super-resolution aperture scanning microscope. Nature 237:510–513

    CAS  PubMed  Google Scholar 

  8. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: image recording with resolution λ∕20. Appl Phys Lett 44:651–653

    Google Scholar 

  9. Lewis A, Isaacson M, Harootunian A, Muray A (1984) Development of a 500Å spatial resolution light microscope. Ultramicroscopy 13:227–231

    Google Scholar 

  10. Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Apertureless near-field optical microscope. Appl Phys Lett 65:1623–1625

    CAS  Google Scholar 

  11. Bachelot R, Gleyzes P, Boccara AC (1994) Near-field optical microscopy by local perturbation of a diffraction spot. Microsc Microanal Microstruct 5(4–6):389–397

    CAS  Google Scholar 

  12. Kawata S, Inouye Y (1995) Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy 57:313–317

    CAS  Google Scholar 

  13. Keilmann F, van der Weide DW, Eickelkamp T, Merz R, Stockle D (1996) Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt Commun 129:15–18

    CAS  Google Scholar 

  14. Novotny L, Sánchez EJ, Xie XS (1998) Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams. Ultramicroscopy 71:21–29

    CAS  Google Scholar 

  15. Sanchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82 (20):4014–4017

    CAS  Google Scholar 

  16. Dunn B (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2928

    CAS  PubMed  Google Scholar 

  17. Hecht B et al (2000) Scanning near-field optical microscopy with aperture probes:fundamentals and applications. J Chem Phys 112:7761–7774

    CAS  Google Scholar 

  18. Hecht B (2004) Nano-optics with single quantum systems. Philos Trans R Soc Lond A 362:881–899

    Google Scholar 

  19. Novotny L, Stranick SJ (2006) Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 57:303–331

    CAS  PubMed  Google Scholar 

  20. Hartschuh A, Qian H, Meixner A, Anderson N, Novotny L (2006) Tip-enhanced optical spectroscopy for surface analysis in biosciences. Surf Interface Anal 38:1472–1480

    CAS  Google Scholar 

  21. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photon 3:388–394

    CAS  Google Scholar 

  22. Pohl DW (2000) Near-field optics seen as an antenna problem. In: Zhu X, Ohtsu M (eds) Near-field optics, principles and applications. World Scientific, Singapore, p 9–21

    Google Scholar 

  23. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1:438–483

    Google Scholar 

  24. Novotny L, van Hulst NF (2011) Antennas for light. Nat Photon 5:83–90

    CAS  Google Scholar 

  25. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262:1422–1425

    CAS  PubMed  Google Scholar 

  26. Lewis A (1991) The optical near-field and cell biology. Semin Cell Biol 2:187–192

    CAS  PubMed  Google Scholar 

  27. Betzig E, Chichester RJ, Lanni F, Taylor DL (1993) Near-field fluorescence imaging of cytoskeletal actin. Bioimaging 1:129–135

    CAS  Google Scholar 

  28. Gheber LA, Hwang J, Eddidin M (1998) Design and optimization of a near-field scanning optical microscope for imaging samples in liquid. Appl Opt 373574–373581

    Google Scholar 

  29. Subramaniam V, Kirsch AK, Jovin T (1998) Cell biological applications of scanning near-field optical microscopy. Cell Mol Biol 44:689

    CAS  PubMed  Google Scholar 

  30. Edidin M (2001) Near-field scanning optical microscopy, a siren call to biology. Traffic 2:1797–803

    Google Scholar 

  31. de Lange F et al (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 114:4153–4160

    PubMed  Google Scholar 

  32. Garcia-Parajo MF (2008) Optical antennas focus in on biology. Nat Photon 2:201–203

    CAS  Google Scholar 

  33. Hwang J, Gheber LA, Margolis L, Edidin M (1998) Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J 74:2184–2190

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Höppener C, Molenda D, Fuchs H, Naber A (2003) Scanning near-field optical microscopy of a cell membrane in liquid. J Microsc 210:288–293

    PubMed  Google Scholar 

  35. Koopman M et al (2004) Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS Lett 573:6–10

    CAS  PubMed  Google Scholar 

  36. Höppener C, Siebrasse JP, Peters R, Kuitscheck U, Naber A High-resolution near-field optical imaging of single nuclear pore complexes under physiological conditions. Biophys J 88:3681–3688

    Google Scholar 

  37. Ianoul A et al (2005) Imaging nanometer domains of beta-adrenergic receptor complexes on the surface of cardiac myocytes. Nat Chem Biol 1:196–202

    CAS  PubMed  Google Scholar 

  38. de Bakker BI et al (2007) Nanoscale organization of the pathogen receptor dc-sign mapped by single-molecule high-resolution fluorescence microscopy. Chem Phys Chem 8:1473–1480

    PubMed  Google Scholar 

  39. Höppener C, Novotny L (2008) Antenna-based optical imaging of single C a 2+ transmembrane proteins in liquids. Nano Lett 8:642–646

    PubMed  Google Scholar 

  40. Herrmann M et al (2009) Near field optical study of protein transport kinetics at a single nuclear pore. Nano Lett 9:3330–3336

    CAS  PubMed  Google Scholar 

  41. van Zanten TS et al (2010) Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci USA 107:15437–15442

    PubMed  Google Scholar 

  42. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv f Miroskop Anat 9:413

    Google Scholar 

  43. Rayleigh L (1896) On the theory of optical images with special reference to the microscope. Philos Mag 5:167–195

    Google Scholar 

  44. Vigoureux JM, Depasse F, Girard C (1992) Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves. Appl Opt 31:3036–3045

    CAS  PubMed  Google Scholar 

  45. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Google Scholar 

  46. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726

    CAS  Google Scholar 

  47. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930

    PubMed  Google Scholar 

  48. Hecht B, Bielefeldt H, Inouye Y, Pohl DW, Novotny L (1997) Facts and artifacts in near-field optical microscopy. J Appl Phys 81:2492–2498

    CAS  Google Scholar 

  49. Betzig E, Finn PL, Weiner SJ (1992) Combined shear force and near-field scanning optical microscopy. Appl Phys Lett 60:2484–2486

    CAS  Google Scholar 

  50. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl Phys Lett 60:2957–2959

    CAS  Google Scholar 

  51. Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 66:1842–1844

    CAS  Google Scholar 

  52. Brunner R, Bietsch A, Hollrichter O, Marti O (1997) Distance control in near-field optical microscopy with piezoelectric shear-force detection suitable for imaging in liquids. Rev Sci Instrum 68:1769

    CAS  Google Scholar 

  53. Tsai DP, Lu YY (1998) Tapping-mode tuning fork force sensing for near-field scanning optical microscopy. Appl Phys Lett 69:2724–2726

    Google Scholar 

  54. Naber A, Maas H-J, Razavi K, Fischer U (1999) Dynamic force distance control suited to various probes for scanning near-field optical microscopy. Rev Sci Instrum 70:3955–3961

    CAS  Google Scholar 

  55. Quate C (1994) Near-field scanning optical and force microscope including cantilever and optical waveguide. US patent 5,354,985

    Google Scholar 

  56. Danzebrink HU, Wilkening G, Ohlsson O (1995) Near–field optoelectronic detector probes based on standard scanning force cantilevers. Appl Phys Lett 67:1981

    CAS  Google Scholar 

  57. Eckert R et al (2000) Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes. Appl Phys Lett 77:3695Ű3697

    Google Scholar 

  58. Oesterschulze E, Georgiev G, Müller-Wiegand M, Vollkopf A, Rudow O (2000) Transmission line probe based on a bow–tie antenna. J Microsc 202:39–44

    Google Scholar 

  59. Heisig S, Rudow O, Oesterschulze E (2000) Scanning near-field optical microscopy in the near-infrared region using light emitting cantilever probes. Appl Phys Lett 77:1071–1073

    CAS  Google Scholar 

  60. Gerton JM, Wade LA, Lessard GA, Ma Z, Quake SR (2004) Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys Rev Lett 93:180801–4

    PubMed  Google Scholar 

  61. Farahani JN et al (2007) Bow-tie optical antenna probes for single-emitter scanning near-field optical microscope. Nanotechnology 18:1255061–4

    Google Scholar 

  62. Knoll B, Keilmann F (1999) Near-field probing of vibrational absorption for chemical microscopy. Nature 399:134

    CAS  Google Scholar 

  63. Hillenbrand R, Keilmann F (2002) Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl Phys Lett 80:25

    CAS  Google Scholar 

  64. Ruiter A, Veerman J, van der Werf K, van Hulst N (1997) Dynamic behavior of tuning fork shear-force feedback. Appl Phys Lett 71:28–30

    CAS  Google Scholar 

  65. Rensen WHJ, van Hulst NF (2000) Imaging soft samples in liquids with tuning fork based shear force microscopy. Appl Phys Lett 75:1557–1559

    Google Scholar 

  66. Lambelet P, Sayah A, Pfeffer M, Philipona C, Marquis-Weible F (1998) Chemically etched fiber tips for near-field optical microscopy: a new process for smoother tips. Appl Opt 37:7289

    CAS  PubMed  Google Scholar 

  67. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    CAS  Google Scholar 

  68. Lezec HJ et al Beaming light from a subwavelength aperture. Science 297:820–822

    Google Scholar 

  69. Fischer UC (1986) Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence. J Opt Soc Am B 3:1239–1244

    CAS  Google Scholar 

  70. Kuhn H (1987) Self-organizing molecular electronic devices ? In: Carter F (ed) Molecular electronic devices II. Dekker, New York, p 411–426

    Google Scholar 

  71. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelar RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251:1468–1470

    CAS  PubMed  Google Scholar 

  72. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182

    Google Scholar 

  73. Bouwkamp CJ (1950) On Bethe’s theory of diffraction by small holes. Philips Res Rep 5:321–332

    Google Scholar 

  74. Veerman J, García-Parajó M, Kuipers L, van Hulst N (1999) Single molecule mapping of the optical field distribution of probes for near-field microscopy. J Microsc 194:477

    CAS  PubMed  Google Scholar 

  75. Höppener C, Molenda D, Fuchs H, Naber A (2003) Simultaneous topographical and optical characterization of near-field aperture probes by way of imaging fluorescent nanospheres. Appl Phys Lett 80:1331–1333

    Google Scholar 

  76. Leviatan Y (1986) Study of near-zone fields of a small aperture. J Appl Phys 60:1577–1583

    Google Scholar 

  77. Moers MHP (1995) Near-Field Optical Microscopy. ISBN 90-9008593-9, University of Twente, The Netherlands, CIP-Gegevens Koninklijke Bibliotheek, Den Haag

    Google Scholar 

  78. Novotny L, Hafner C (1994) Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E 50:4094–4106

    CAS  Google Scholar 

  79. Valaskovic GA, Holton M, Morrison G (1995) Parameter control, characterization, and optimization in the fabrication of optical fiber near–field probes. Appl Opt 34:1215

    CAS  PubMed  Google Scholar 

  80. Hollars CW, Dunn RC (1998) Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes. Rev Sci Instrum 69:1747–1452

    CAS  Google Scholar 

  81. Turner D (1984) Etch procedure for optical fibers. US patent 4,469,554

    Google Scholar 

  82. Hoffmann P, Dutoit B, Salathé R-P (1995) Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. Ultramicroscopy 61:165–170

    CAS  Google Scholar 

  83. Zeisel D, Dutoit B, Nettesheim S, Zenobi R (1996) Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips. Appl Phys Lett 68:2491

    CAS  Google Scholar 

  84. Stöckle R et al (1999) High-quality near-field optical probes by tube etching. Appl Phys Lett 75:160–162

    Google Scholar 

  85. Obermüller C, Karrai K, Kolb G, Abstreiter G (1995) Transmitted radiation through a subwavelength sized tapered optical fiber tip. Ultramicroscopy 61:171–178

    Google Scholar 

  86. Novotny L, Pohl DW (1995) Light propagation in scanning near-field optical microscopy. In: Marti O, Möller R (eds) Photons and local probes, NATO Advanced Study Institute, Series E. Kluwer Academic, Dordrecht, pp 21–33

    Google Scholar 

  87. Pangaribuan T, Yamada K, Jiang S, Ohsawa H, Ohtsu M (1992) Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope. Jpn J Appl Phys 31:L1302

    CAS  Google Scholar 

  88. Saiki T, Mononobe S, Ohtsu M, Saito N, Kusano J (1996) Tailoring a high-transmission fiber probe for photon scanning tunneling microscope. Appl Phys Lett 68:2612

    CAS  Google Scholar 

  89. Monobe S, Saiki T, Suzuki T, Koshihara S, Othsu M (1998) Fabrication of a triple tapered probe for near–field optical spectroscopy in uv region based on selective etching of a multistep index fiber. Opt Commun 146:45–48

    Google Scholar 

  90. Yatsui T, Kourogi M, Ohtsu M (1998) Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure. Appl Phys Lett 73:2089–2091

    Google Scholar 

  91. Martin OJF, Paulus M (2002) Influence of the surface roughness on the near-field generated by an aperture / apertureless probe. J Microsc 205:147

    CAS  PubMed  Google Scholar 

  92. Saiki T, Matsuda K (1999) Near-field optical fiber probe optimized for illuminationŰcollection hybrid mode operation. Appl Phys Lett 74:2773–2775

    CAS  Google Scholar 

  93. Muranishi M et al (1997) Control of aperture size of optical probes for scanning near-field optical microscopy using focused ion beam technology. Jap J Appl Phys 36:L942–L944

    Google Scholar 

  94. Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl Phys Lett 72:3115–3117

    CAS  Google Scholar 

  95. Naber A et al (2002) Enhanced light confinement in a near-field optical probe with a triangular aperture. Phys Rev Lett 89:210801

    CAS  PubMed  Google Scholar 

  96. Molenda D, des Francs GC, Fischer UC, Rau N, Naber A (2005) High-resolution mapping of the optical near-field components at a triangular nano-aperture. Opt Express 13:10688–10696

    Google Scholar 

  97. des Francs GC, Molenda D, Fischer UC, Naber A (2005) Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations. Phys Rev B 72:165111–6

    Google Scholar 

  98. Fischer UC, Koglin J, Fuchs H (1994) The tetrahedal tip as a probe for scanning near–field optical microscopy at 30 nm resolution. J Microsc 176:231–237

    Google Scholar 

  99. Koglin J, Fischer U, Fuchs, H (1996) Scanning near–field optical microscopy with a tetrahedral tip at a resolution of 6 nm. J Biom Opt 1:75–78

    CAS  Google Scholar 

  100. Enderle T et al (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc Natl Acad Sci USA 94:520–525

    CAS  PubMed  Google Scholar 

  101. Meixner AJ, Kneppe H (1995) Scanning near-field optical microscopy in cell biology and microbiology. Cell Mol Biol 44:673–688

    Google Scholar 

  102. Ianoul A et al (2004) Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes. Biophys J 87:3525–3535

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Qiao W et al (2005) Imaging of p-glycoprotein of H69/VP small-cell lung cancer lines by scanning near-field optical microscopy and confocal laser microspectrofluorometer. Ultramicroscopy 105:330–335

    CAS  PubMed  Google Scholar 

  104. Chen Y et al (2008) Excitation enhancement of cdse quantum dots by single metal nanoparticles. Appl Phys Lett 93:053106.

    Google Scholar 

  105. van Zanten TS et al (2009) Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc Natl Acad Sci USA 106:18557–18562

    PubMed  Google Scholar 

  106. Abulrob A et al (2010) Nanoscale imaging of epidermal growth factor receptor clustering 285:3145–3156

    CAS  Google Scholar 

  107. Vobornik D et al (2008) Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes. Appl Phys Lett 93:1639041–4

    Google Scholar 

  108. Vobornik D et al (2009) Near-field optical probes provide subdiffractionlimited excitation areas for fluorescence correlation spectroscopy on membranes. Pure Appl Chem 81:1645–1653

    CAS  Google Scholar 

  109. Manzo C, van Zanten TS, Garcia-Parajo MF (2010) Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes. Biophys J 100:L08–L10

    Google Scholar 

  110. Hartschuh A, Pedrosa HN, Novotny L, Krauss T (2003) Simultaneous fluorescence and raman scattering from single carbon nanotubes. Science 301:1354–1356

    CAS  PubMed  Google Scholar 

  111. Ichimura T, Hashimoto M, Inouye Y, Kawata S (2004) Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging. Phys Rev Lett 92:220801–4

    PubMed  Google Scholar 

  112. Chen Y et al (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132:16559–16570

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Schwille P, Haupts U, Maiti S, Webb W (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two- photon excitation. Biophys J 77:2251–2265

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Sanchez EJ, Novotny L, Holtom GR, Xie XS (1997) Fluorescence imaging of single molecules by two-photon excitation. J Phys Chem A 101:7019–7023

    CAS  Google Scholar 

  115. Hartschuh A, Sanchez E, Xie X, Novotny L (2004) High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett 90:0955031–4

    Google Scholar 

  116. Frey HG, Witt S, Felderer K, Guckenberger R (2004) High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. Phys Rev Lett 93:200801

    PubMed  Google Scholar 

  117. Kalkbrenner T et al (2005) Optical microscopy via spectral modifications of a nanoantenna. Phys Rev Lett 95:2008011–2008014

    Google Scholar 

  118. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single molecule fluorescence. Phys Rev Lett 96:1130021–4

    Google Scholar 

  119. Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007) Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28

    CAS  PubMed  Google Scholar 

  120. Keilmann F, Hillenbrand R (2004) Near-field microscopy by elastic light scattering from a tip. Philos Trans R Soc Lond A 362:787–797

    CAS  Google Scholar 

  121. Höppener C, Novotny L (2008) Antenna-based optical imaging of single Ca2+-transmembrane proteins in liquids. Nano Lett 8:642–646

    PubMed  Google Scholar 

  122. Höppener C, Novotny, L (2008) Imaging of membrane proteins using antenna-based optical microscopy. Nanotechnology 19:3840121–3840128

    Google Scholar 

  123. van Zanten TS, Lopez-Bosque MJ, Garcia-Parajo MF (2010) Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna. Small 6:270–275

    PubMed  Google Scholar 

  124. Brehm M, Taubner T, Hillenbrand R, Keilmann F (2006) Mapping of single nanoparticles and viruses at nanoscale resolution. Nano Lett 6:1307–1310

    CAS  PubMed  Google Scholar 

  125. Paulite M et al (2011) Imaging secondary structure of individual amyloid fibrils of a ?2-microglobulin fragment using near-field infrared spectroscopy. J Am Chem Soc 133:7376–7383

    CAS  PubMed  Google Scholar 

  126. Hartschuh A, Qian H, Meixner A, Anderson N, Novotny L Tip-enhanced optical spectroscopy of single-walled carbon nanotubes. In: Kawata S, Shalaev VM (eds) Photons and local probes. Advances in nano-optics and nano-photonics, vol 1, Tip Enhancements. Elsevier, Amsterdam, New York

    Google Scholar 

  127. Kühn S, Hakanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402

    PubMed  Google Scholar 

  128. Palomba S, Danckwerts M, Novotny L (2009) Nonlinear plasmonics with gold nanoparticle antennas. J Opt A 11:1140301–6

    Google Scholar 

  129. Martin YC, Hamann HF, Wickramasinghe HK (2001) Strength of the electric field in apertureless near-field optical microscopy. J Appl Phys 89:5774–5778

    CAS  Google Scholar 

  130. Sönnichsen C et al (2002) Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett 88:077402

    PubMed  Google Scholar 

  131. Novotny L, Sanchez EJ, Xie XS (1999) Near-field optical spectroscopy based on the field enhancement at laser illuminated metal tips. Opt Photon News 10:24

    Google Scholar 

  132. Demming AL, Festy F, Richards D (2005) Plasmon resonances on metal tips: Understanding tip-enhanced Raman scattering. J Chem Phys 122:1847161–1847167

    Google Scholar 

  133. Ossikovski R, Nguyen Q, Picardi G (1956) Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys Rev B 75:045412

    Google Scholar 

  134. Höppener C, Novotny L (2012) Exploiting the light-metal interaction for biomolecular sensing and imaging. Quart Rev Biophys 45:209–255

    Google Scholar 

  135. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Google Scholar 

  136. Drexhage KH (1970) Influence of a dielectric interface on fluorescence decay time. J Lumin 1/2:693–701

    Google Scholar 

  137. Drexhage KH (1974) Interaction of light with monomolecular dye layers. In: Wolf E (ed) Progress in optics, vol 12. North Holland, Amsterdam, p 161–232

    Google Scholar 

  138. Bian RX, Dunn RC, Xie XS, Leung PT (1995) Single molecule emission characteristics in near-field microscopy. Phys Rev Lett 75:4772–4775

    CAS  PubMed  Google Scholar 

  139. Novotny L (1996) Single molecule fluorescence in inhomogeneous environments. Appl Phys Lett 69:3806–3808

    CAS  Google Scholar 

  140. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  141. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 107:638–677

    Google Scholar 

  142. Jain PK, Lee K-S, El-Sayed I H, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  PubMed  Google Scholar 

  143. Bharadwaj P, Anger P, Novotny L (2007) Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18:044017

    Google Scholar 

  144. Rogobete L, Kaminski F, Agio M, Sandoghdar V (2007) Design of plasmonic nanoantennae for enhancing spontaneous emission. Opt Lett 32:1623–1625

    PubMed  Google Scholar 

  145. Härtling T, Reichenbach P, Eng LM (2007) Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle. Opt Express 15:12806

    PubMed  Google Scholar 

  146. Fischer UC, Pohl DW (1989) Observation on single-particle plasmons by near-field optical microscopy. Phys Rev Lett 62:458–461

    CAS  PubMed  Google Scholar 

  147. Li K., Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91:227402

    PubMed  Google Scholar 

  148. Wokaun A, Lutz HP, King AP, Wild UP, Ernst RR (1983) Energy transfer in surface enhanced luminescence. J Chem Phys 79:509–514

    CAS  Google Scholar 

  149. Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ (2009) Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. Nano 3:744–752

    CAS  Google Scholar 

  150. Bharadwaj P, Novotny L (2010) Plasmon-enhanced photoemission from a single Y3N@C80 fullerene. J Phys Chem C 210:7444–7447

    Google Scholar 

  151. Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266–14274

    CAS  PubMed  Google Scholar 

  152. Seelig J et al (2007) Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level. Nano Lett 7:685–689

    CAS  PubMed  Google Scholar 

  153. Höppener C, Novotny L (2009) Background suppression in near-field optical imaging. Nano Lett 9:903–908

    PubMed Central  PubMed  Google Scholar 

  154. Xie C, Mu C, Cox JR, Gerton JM (2006) Tip-enhanced fluorescence microscopy of high-density samples. Appl Phys Lett 89:143117

    Google Scholar 

  155. Yano T et al (2007) Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced raman microscopy. Appl Phys Lett 91:1211011

    Google Scholar 

  156. Mangum BD, Mu C, Gerton JM (2008) Resolving single fluorophores within dense ensembles: contrast limits of tip-enhanced fluorescence microscopy. Opt Express 16:6183–6193

    PubMed  Google Scholar 

  157. Kuhn H (1970) Classical aspects of energy transfer in molecular systems. J Chem Phys 53:101–108

    CAS  Google Scholar 

  158. Frey H, Keilmann F, Kriele A, Guckenberger R (2002) Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Appl Phys Lett 81:5530–5532

    Google Scholar 

  159. Kerker M, Wang D-S, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Opt 19:4159–4174

    CAS  PubMed  Google Scholar 

  160. Moskovits M (1985) Surface-enhanced Raman spectroscopy. Rev Mod Phys 57:783–826

    CAS  Google Scholar 

  161. Pettinger B (2010) Single-molecule surface- and tip-enhanced Raman spectroscopy. Mol Phys 108:2039–2059

    CAS  Google Scholar 

  162. Markel VA et al (1999) Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Phys Rev B 59:10903

    CAS  Google Scholar 

  163. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    CAS  Google Scholar 

  164. Hartschuh A (2008) Tip-enhanced near-field optical microscopy. Angew Chem Int Ed 47:8178–8191

    CAS  Google Scholar 

  165. Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R (2009) Tip-enhanced raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf Sci 603:11335–1341

    Google Scholar 

  166. Neacsu CC, Dreyer J, Behr N, Raschke MB (2006) Scanning probe raman spectroscopy with single molecule sensitivity. Phys Rev B 73:19234061–4

    Google Scholar 

  167. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Single molecule tip-enhanced raman spectroscopy with silver tips. J Phys C 111:1733–1738

    Google Scholar 

  168. Steidtner J, Pettinger B (2008) Tip-enhanced raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys Rev Lett 100:361011–4

    Google Scholar 

  169. Domke KF, Zhang D, Pettinger B (2007) Tip-enhanced raman spectra of picomole quantities of dna nucleobases at au(111). J Am Chem Soc 129:6708–6709

    CAS  PubMed  Google Scholar 

  170. Bailo E, Deckert V (2008) Tip-enhanced raman spectroscopy of single rna strands: Towards a novel direct-sequencing method. Angew Chem 47:1658–1661

    CAS  Google Scholar 

  171. Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S (2004) Tip-enhanced near-field raman analysis of tip-pressurized adenine molecule. Phys Rev B 69:5155418

    Google Scholar 

  172. Anderson MS, Gaimari SD (2003) Raman-atomic force microscopy of the ommatidial surfaces of dipteran compound eyes. J Struct Biol 142:364–368

    PubMed  Google Scholar 

  173. Neugebauer U et al (2006) Resonances of individual metal nanowires in the infrared. Chem Phys Chem 7:1428–1430

    CAS  PubMed  Google Scholar 

  174. Yeo BS, Madler S, Schmid T, Zhang W, Zenobi R (2008) Tip-enhanced raman spectroscopy can see more: The case of cytochrome c. JPCC 112:4867–4873

    CAS  Google Scholar 

  175. Richter M, Hedegaard M, Deckert-Gaudig T, Lampen P, Deckert V (2011) Laterally resolved and direct spectroscopic evidence of nanometer-sized lipid and protein domains on a single cell. Small 7:209–214

    CAS  PubMed  Google Scholar 

  176. Wood BR et al (2011) Tip-enhanced raman scattering (ters) from hemozoin crystals within a sectioned erythrocyte. Nano Lett 11:1868–1873

    CAS  PubMed  Google Scholar 

  177. Frey HG, Paskarbeit J, Anselmetti D (2009) Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment. Appl Phys Lett 94:2411161–2411163

    Google Scholar 

  178. Cambi A et al (2006) Organization of the integrin LFA-1 in nanoclusters regulates its activity. Mol Biol Cells 17:4270

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the “Ministerium für Wissenschaft, Forschung und Technologie” (MWFT) of the State North Rhine-Westphalia, Germany for their financial support within the initiative “Rückkehrer-Programm Nanotechnology”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Höppener, C. (2014). Scanning Near-Field Optical Microscopy for Investigations of Bio-Matter. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics