Skip to main content
Log in

Optical filaments and optical bullets in dispersive nonlinear media

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We have investigated the evolution of picosecond and femtosecond optical pulses governed by the amplitude vector equation in the optical and UV domains. We have written this equation in different coordinate frames, namely, in the laboratory frame, the Galilean frame, and the moving-in-time frame and have normalized it for the cases of different and equal transverse and longitudinal sizes of optical pulses or modulated optical waves. For optical pulses with a small transverse size and a large longitudinal size (optical filaments), we obtain the well-known paraxial approximation in all the coordinate frames, while for optical pulses with relatively equal transverse and longitudinal sizes (so-called light bullets), we obtain new non-paraxial nonlinear amplitude equations. In the case of optical fields with low intensity, we have reduced the nonlinear amplitude vector equations governing the light-bullet evolution to the linear amplitude equations. We have solved the linear equations using the method of Fourier transform. An unexpected new result is the relative stability of light bullets and the significant decrease in the diffraction enlargement of light bullets with respect to the case of long pulses in the linear propagation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett., 13, 479 (1964).

    Article  ADS  Google Scholar 

  2. V. I. Talanov, Pisma Zh. ’Eksp. Teor. Fiz., 2, 222 (1965).

    Google Scholar 

  3. P. L. Kelley, Phys. Rev. Lett., 15, 1005 (1965).

    Article  ADS  Google Scholar 

  4. A. S. Chirkin, Ph.D. Thesis, M. V. Lomonosov Moscow State University (1967).

  5. A. G. Litvak and V. I. Talanov, Izv. Vuzov, Radiofizika, 10, 539 (1967).

    Google Scholar 

  6. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, Zh. ’Eksp. Teor. Fiz., 55, 1430 (1968).

    Google Scholar 

  7. M. Born and E. Wolf, Principles of Optics, 6th (corr.) edition, Cambridge University Press (1998).

  8. T. Carozzi, R. Karlsson, and J. Bergman, Phys. Rev. E, 61, 2024 (2000).

    Article  ADS  Google Scholar 

  9. Y. Silberberg, Opt. Lett., 15, 1282 (1990).

    ADS  Google Scholar 

  10. A. B. Blagoeva, S. G. Dinev, A. A. Dreisehuh, and A. Naidenov, IEEE J. Quantum Electron., QE-27, 2060 (1991).

    Article  ADS  Google Scholar 

  11. L. M. Kovachev, Int. J. Math. & Math. Sci., 18, 949 (2004).

    Article  MathSciNet  Google Scholar 

  12. I. H. Malitson, J. Opt. Soc. Am. B, 55, 1205 (1965).

    Article  ADS  Google Scholar 

  13. A. Yariv, Optical Waves in Crystals, John Wiley & Sons (1984).

  14. P. D. Maker and R. W. Terhune, Phys. Rev., 137, 801 (1965).

    Article  ADS  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Electrodynamics of Condensed Matter [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  16. G. P. Agrawal, Nonliner Fiber Optics, Academic Press (2003).

  17. L. M. Kovachev and V. N. Serkin, Izv. Akad. Nauk, Fizika, 53, 1599 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovachev, L.M., Pavlov, L.I., Ivanov, L.M. et al. Optical filaments and optical bullets in dispersive nonlinear media. J Russ Laser Res 27, 185–203 (2006). https://doi.org/10.1007/s10946-006-0008-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0008-x

Keywords

Navigation