Skip to main content

Advertisement

Log in

Optical transmission through a near-field probe with a semiconducting matter in its core

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The theory of light transmission through the aperture-type near-field optical probe with a semiconducting matter in its core is presented. It is based on the exact description of the transverse-magnetic (TM) and transverse-electric (TE) eigenmodes inside a conical waveguide with perfectly conducting metallic walls and a dissipative core described by a complex frequency-dependent dielectric function. We concentrate on evaluating the energy density distribution of the electromagnetic field inside a probe with a subwavelength aperture including the region near the tip exit, where it is mainly determined by the contribution of evanescent waves. Significant attention is paid to detailed calculations of the near-field transmission coefficient for semiconducting (GaP, GaN, GaAs, and Si) probes of mesoscopic length and to a comparison of the results obtained with those for the dielectric (SiO2, Si3N4, and diamond) probes. Our calculations indicate a strong enhancement in the transmission efficiency of the semiconducting near-field probes with a high refractive index both in the visible and near-infrared spectral ranges as compared to the conventional fiber or solid quartz tips. It is shown that the optical transmittance for the dominant transverse-electric (TE11) mode is significantly greater than that for the lowest-order transverse-magnetic (TM01) mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ohtsu and K. Kobayashi, Optical Near Fields. Introduction to Classical and Quantum Theories of Electromagnetic Phenomena at the Nanoscale, Springer-Verlag, Berlin (2004).

    Google Scholar 

  2. B. Hecht, B. Sick, U. P. Wild, et al., J. Chem. Phys., 112, 7761 (2000).

    Article  ADS  Google Scholar 

  3. C. Girard, C. Joachim, and S. Gauthier, Rep. Prog. Phys., 63, 893, (2000).

    Article  ADS  Google Scholar 

  4. T. Kawazoe, K. Kobayashi, J. Lim, et al., Phys. Rev. Lett., 88, 067404 (2002).

  5. J. R. Guest, T. H. Stievater, X. Li, et al., Phys. Rev. Lett., 65, 241310 (2002).

  6. M. Lomascolo, A. Vergine, T. K. Johal, et al., Phys. Rev. B 66, 041302 (2002).

  7. T. Guenther, C. Lienau, T. Elsaesser, et al., Phys. Rev. Lett., 89, 057401 (2002).

    Google Scholar 

  8. Y. Yayon, M. Rappaport, V. Umansky, and I. Bar-Joseph, Phys. Rev. B 66, 0333310 (2002).

    Google Scholar 

  9. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett., 90, 095503 (2003).

    Google Scholar 

  10. T. K. Sham, S. J. Naftel, P.-S. G. Kim, et al., Phys. Rev. B 70, 045313 (2004).

  11. Y. Gu and Q. Gong, Phys. Rev. B 69, 035105 (2004).

  12. R. Quidant, J.-C. Weeber, and A. Dereux, Phys. Rev. E 65, 036616 (2002).

    Google Scholar 

  13. K.-B. Song, J. Lee, J.-H Kim, et al., Phys. Rev. Lett., 85, 3842 (2000).

    Article  ADS  Google Scholar 

  14. P. Kramper, A. Birner, M. Agio, et al., Phys. Rev. B 64, 233102 (2001).

  15. S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, et al., Phys. Rev. B 66, 235204 (2002).

    Google Scholar 

  16. C. Chicanne, T. David, R. Quidant, et al., Phys. Rev. Lett., 88, 097402 (2002).

  17. M. Ohtsu, K. Kobayashi, T. Kawazoe, et al., IEEE J. Sel. Top. Quantum Electron., 8, 839, (2002).

    Article  Google Scholar 

  18. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett., 44, 651 (1984).

    Article  ADS  Google Scholar 

  19. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Ultramicroscopy, 13, 227 (1984).

    Article  Google Scholar 

  20. L. Novotny, D. W. Pohl, and P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).

    Article  ADS  Google Scholar 

  21. L. Novotny, D. W. Pohl, and B. Hecht, Opt. Lett., 20, 970 (1995); Ultramicroscopy, 61, 1 (1995).

    Article  ADS  Google Scholar 

  22. A. Castiaux, C. Girard, A. Dereux, et al., Phys. Rev. E 54, 5752 (1996).

    Article  ADS  Google Scholar 

  23. T. I. Kuznetsova and V. S. Lebedev, Kvantovaya Électron., 32, 727 (2002) [Quantum Electron., 32, 727 (2002)].

    Article  Google Scholar 

  24. T. I. Kuznetsova and V. S. Lebedev, Kvantovaya Électron., 33, 931 (2003) [Quantum Electron., 33, 931 (2003)].

    Article  Google Scholar 

  25. T. I. Kuznetsova and V. S. Lebedev, J. Russ. Laser Res., 24, 458 (2003).

    Article  Google Scholar 

  26. T. I. Kuznetsova, V. S. Lebedev, and A. M. Tsvelik, J. Opt. A: Pure Appl. Opt., 6, 338 (2004).

    Article  ADS  Google Scholar 

  27. H. Furukawa and S. Kawata, Opt. Commun., 132, 170 (1996).

    Article  ADS  Google Scholar 

  28. H. Nakamura, T. Sato, H. Kambe, et al., J. Microsc., 202, 50 (2001).

    Article  MathSciNet  Google Scholar 

  29. S. Mitsugi, Y. J. Kim, and K. Goto, Opt. Rev., 8, 120 (2001).

    Article  Google Scholar 

  30. T. Yatsui, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett., 71, 1756 (1997); ibid., 73, 2090 (1998).

    Article  ADS  Google Scholar 

  31. T. Saiki and K. Matsuda, Appl. Phys. Lett., 74, 2773 (1999).

    Article  ADS  Google Scholar 

  32. A. Naber, D. Molenda, U. C. Fischer, et al., Phys. Rev. Lett., 89, 210801, (2002).

  33. F. Keilmann, J. Microsc., 194, 567 (1999).

    Article  Google Scholar 

  34. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, J. Microsc., 210, 220 (2003).

    Article  MathSciNet  Google Scholar 

  35. R. Eckert, J. M. Freyland, H. Gersen, et al., Appl. Phys. Lett., 77, 3695 (2000); J. Microsc., 202, 7 (2001).

    Article  ADS  Google Scholar 

  36. Y. Mitsuoka, T. Niwa, S. Ichihara, et al., J. Microsc., 202, 12 (2001).

    Article  MathSciNet  Google Scholar 

  37. P. N. Minh, T. Ono, S. Tanaka, and M. Esashi, J. Microsc., 202, 28 (2001).

    Article  MathSciNet  Google Scholar 

  38. W. Noell, M. Abraham, K. Mayr, et al., Appl. Phys. Lett., 70, 1236 (1997).

    Article  ADS  Google Scholar 

  39. M. Abraham, W. Ehrfeld, M. Lacher, et al., Ultramicroscopy, 71, 93 (1998).

    Article  Google Scholar 

  40. H. U. Danzebrink, A. Castiaux, C. Girard, et al., Ultramicroscopy, 71, 371 (1998).

    Article  Google Scholar 

  41. T. Dziomba, H. U. Danzebrink, C. Lehrer, et al., J. Microsc., 202, 22 (2001).

    Article  MathSciNet  Google Scholar 

  42. T. Yatsui, K. Isumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett., 80, 2257 (2002).

    Article  ADS  Google Scholar 

  43. S. Heisig, H. U. Danzenbrink, A. Leyk, et al., Ultramicroscopy, 71, 99 (1998).

    Article  Google Scholar 

  44. A. Castiaux, H. U. Danzebrink, and X. Bouju, J. Appl. Phys., 84, 52 (1998).

    Article  ADS  Google Scholar 

  45. T. I. Kuznetsova and V. S. Lebedev, Pis’ma Zh. Éksp. Teor. Fiz., 79, 70 (2004) [JETP Lett., 79, 62 (2004)].

    Google Scholar 

  46. T. I. Kuznetsova and V. S. Lebedev, Kvantovaya Électron., 34, 361 (2004) [Quantum Electron., 34, 361 (2004)].

    Article  Google Scholar 

  47. T. I. Kuznetsova and V. S. Lebedev, Phys. Rev. B 70, 035107 (2004).

    Google Scholar 

  48. R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York (1961).

    Google Scholar 

  49. L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz, Moscow (1988).

    Google Scholar 

  50. M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York (1965).

    Google Scholar 

  51. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, (2nd Ed.), Pergamon, Oxford (1993).

    Google Scholar 

  52. H. A. Bethe, Phys. Rev. 66, 163 (1944).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. C. J. Bouwkamp, Rep. Prog. Phys. 17, 35 (1954).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. A. Roberts, J. Appl. Phys. 70, 4045 (1991).

    Article  ADS  Google Scholar 

  55. A. Drezet, J. C. Woehl, and S. Huant, Phys. Rev. E 65, 046611 (2002).

    Google Scholar 

  56. E. D. Palik (Ed.), Handbook of Optical Constants of Solids, Academic, San Diego (1985).

    Google Scholar 

  57. E. D. Palik (Ed.), Handbook of Optical Constants of Solids II, Academic, San Diego (1991).

    Google Scholar 

  58. S. Adachi, Phys. Rev. B 35, 7454 (1987); ibid., 38, 12345 (1988); ibid., 38, 12966 (1988); ibid., 39, 12612 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  59. S. Adachi, J. Appl. Phys., 66, 6030 (1989).

    Article  ADS  Google Scholar 

  60. S. Adachi and T. Taguchi, Phys. Rev. B 43, 9569 (1991).

    Article  ADS  Google Scholar 

  61. A. R. Forouhi and I. Bloomer, Phys. Rev. B 34, 7018 (1986).

    Article  ADS  Google Scholar 

  62. A. R. Forouhi and I. Bloomer, Phys. Rev. B 38, 1865 (1988).

    Article  ADS  Google Scholar 

  63. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  ADS  Google Scholar 

  64. G. Yu, G. Wang, H. Ishikawa, et al., Appl. Phys. Lett., 70, 3209, (1997).

    Article  ADS  Google Scholar 

  65. J.F. Muth, J.H. Lee, I.K. Shmagin, et al., Appl. Phys. Lett., 71, 2572 (1997).

    Article  ADS  Google Scholar 

  66. H. R. Philipp, Solid State Commun. 4, 73 (1966).

    Article  ADS  Google Scholar 

  67. R. A. Roberts and W. C. Walker, Phys. Rev. 161, 730 (1967).

    Article  ADS  Google Scholar 

  68. T. R. Matzelle, H. Gnaegi, A. Ricker, and R. Reichelt, J. Microsc. 209, 113 (2003).

    Article  MathSciNet  Google Scholar 

  69. P. Gall-Borrut, B. Belier, P. Falgayrettes, et al., J. Microsc. 202, 34 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, T.I., Lebedev, V.S. Optical transmission through a near-field probe with a semiconducting matter in its core. J Russ Laser Res 27, 92–131 (2006). https://doi.org/10.1007/s10946-006-0005-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-006-0005-0

Keywords

Navigation