Skip to main content
Log in

In situ synthesis of three-dimensional electrospun polyacrylonitrile nanofiber network reinforced silica aerogel for high-efficiency oil/water separation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In situ electrospun 3D polyacrylonitrile (PAN) nanofiber-reinforced (EPNR) silica aerogel monoliths were prepared through methyltriethoxysilane–trimethylchlorosilane modification followed by ambient pressure drying (APD). The 3D PAN nanofiber network was built into silica sol by liquid-assisted collection. Homodispersed and intertwined PAN nanofibers were well incorporated into the silica aerogel matrix. The APD-EPNR silica aerogel had a porosity of 90.9% and a BJH pore volume of 2.15 cm3 g−1. Furthermore, the APD-EPNR silica aerogel monolith showed excellent flexibility and revealed a highly hydrophobic surface with a water contact angle of 145º. The APD-EPNR aerogel was suitable for removal of oil from water. The static mass of the APD-EPNR silica aerogel achieved 700%–1500% to various solvents and the aerogel can be recovered without obvious performance decline. The APD-EPNR silica aerogel mat also achieved oil/water separation with a separation efficiency of more than 99%. Hence, the prepared APD-EPNR silica aerogel has promising application for treatment of oil pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.Y. Zhang, F. Zhang, W.X. Fang, J. Jin, Membrane wettability manipulation via mixed-dimensional heterostructured surface towards highly efficient oil-in-water emulsion separation. J. Membr. Sci. 672, 121472 (2023). https://doi.org/10.1016/j.memsci.2023.121472

    Article  CAS  Google Scholar 

  2. J.F. Wu, Z.W. Cui, Y.X. Su, Y. Yu, B. Yue, J.D. Hu, J.F. Qu, D. Tian, X.X. Zhan, J.Z. Li, Y.H. Cai, Biomimetic cellulose-nanocrystalline-based composite membrane with high flux for efficient purification of oil-in-water emulsions. J. Hazard. Mater. 446, 130729 (2023). https://doi.org/10.1016/j.jhazmat.2023.130729

    Article  CAS  PubMed  Google Scholar 

  3. W.B. Che, L.Y. Zhou, Q.R. Zhou, Y.J. Xie, Y.G. Wang, Flexible Janus wood membrane with asymmetric wettability for high-efficient switchable oil/water emulsion separation. J. Colloid Interf. Sci. 629, 719–727 (2023). https://doi.org/10.1016/j.jcis.2022.09.109

    Article  CAS  Google Scholar 

  4. D. Allende, A. Cambiella, J.M. Benito, C. Pazos, J. Coca, Destabilization-enhanced centrifugation of metalworking oil-in-water emulsions: effect of demulsifying agents. Chem. Eng. Technol. 31(7), 1007–1014 (2008). https://doi.org/10.1002/ceat.200700018

    Article  CAS  Google Scholar 

  5. A. Karim, M.A. Islam, Z.B. Khalid, Y. Abu, M.M.R. Khan, C.K.M. Faizal, Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture. Renew. Energy 176, 106–114 (2021). https://doi.org/10.1016/j.renene.2021.05.055

    Article  CAS  Google Scholar 

  6. R.P.J. Swannell, K. Lee, M. McDonagh, Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60(2), 342–365 (1996). https://doi.org/10.1128/mmbr.60.2.342-365.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Z.Z. Chen, X.R. Zhang, L. Che, H.H. Peng, S.X. Zhu, F. Yang, X. Zhang, Effect of volatile reactions on oil production and composition in thermal and catalytic pyrolysis of polyethylene. Fuel 271, 117308 (2020). https://doi.org/10.1016/j.fuel.2020.117308

    Article  CAS  Google Scholar 

  8. E.B. Kujawinski, M.C.K. Soule, D.L. Valentine, A.K. Boysen, K. Longnecker, M.C. Redmond, Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol. 45(4), 1298–1306 (2011). https://doi.org/10.1021/es103838p

    Article  CAS  PubMed  Google Scholar 

  9. J. Lee, W.C. Cho, K.M. Poo, S. Choi, T.N. Kim, E.B. Son, Y.J. Choi, Y.M. Kim, K.J. Chae, Refractory oil wastewater treatment by dissolved air flotation, electrochemical advanced oxidation process, and magnetic biochar integrated system. J. Water Process. Eng. 36, 101358 (2020). https://doi.org/10.1016/j.jwpe.2020.101358

    Article  Google Scholar 

  10. M. Fouladi, M. Kavousi Heidari, O. Tavakoli, Development of porous biodegradable sorbents for oil/water separation: a critical review. J. Porous Mat. 30, 1037–1053 (2022). https://doi.org/10.1007/s10934-022-01385-0

    Article  CAS  Google Scholar 

  11. N. Chen, Q.M. Pan, Versatile fabrication of ultralight magnetic foams and application for oil-water separation. ACS Nano 7(8), 6875–6883 (2013). https://doi.org/10.1021/nn4020533

    Article  CAS  PubMed  Google Scholar 

  12. X.C. Dong, J. Chen, Y.W. Ma, J. Wang, M.B. Chan-Park, X.M. Liu, L.H. Wang, Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem. Commun. 48(86), 10660–10662 (2012). https://doi.org/10.1039/c2cc35844a

    Article  CAS  Google Scholar 

  13. J.F. Lu, X. Liu, T.C. Zhang, H.Q. He, S.J. Yuan, Magnetic superhydrophobic polyurethane sponge modified with bioinspired stearic acid@Fe3O4@PDA nanocomposites for oil/ water separation. Colloid Surf. A-Physicochem. Eng. Asp. 624, 126794 (2021). https://doi.org/10.1016/j.colsurfa.2021.126794

    Article  CAS  Google Scholar 

  14. A. Bayat, S.F. Aghamiri, A. Moheb, G.R. Vakili-Nezhaad, Oil spill cleanup from sea water by sorbent materials. Chem. Eng. Technol. 28(12), 1525–1528 (2005). https://doi.org/10.1002/ceat.200407083

    Article  CAS  Google Scholar 

  15. J.K. Pan, Y.Y. Ge, Low-cost and high-stability superhydrophilic/underwater superoleophobic NaA zeolite/copper mesh composite membranes for oil/water separation. Surf. Interf. 37, 102703 (2023). https://doi.org/10.1016/j.surfin.2023.102703

    Article  CAS  Google Scholar 

  16. Y. Yi, P. Liu, N. Zhang, M.E. Gibril, F. Kong, S. Wang, A high lignin-content, ultralight, and hydrophobic aerogel for oil-water separation: preparation and characterization. J. Porous Mat. 28, 1881–1894 (2021). https://doi.org/10.1007/s10934-021-01129-6

    Article  CAS  Google Scholar 

  17. X.L. Ma, Z.S. Kong, Y. Gao, Y.N. Bai, W.Y. Wang, H.L. Tan, X.M. Cai, J.M. Cai, Anisotropic free-standing aerogels based on graphene/silk for pressure sensing and efficient adsorption. ACS Appl. Mater. Interf. 15(25), 30630–30642 (2023). https://doi.org/10.1021/acsami.3c03659

    Article  CAS  Google Scholar 

  18. X.H. Ge, Y.F. Zhang, X. Li, C. Chen, J. Jin, T.Q. Liang, J. Liu, W.W. Lei, D. Shi, Rational design of polymer nanofiber aerogels with aligned micrometer-sized porous structures and their high separation performance. ACS Appl. Compos. Commun. 38, 101527 (2023). https://doi.org/10.1016/j.coco.2023.101527

    Article  Google Scholar 

  19. L.T. Mo, H.W. Pang, Y.T. Lu, Z. Li, H.J. Kang, M.G. Wang, S.F. Zhang, J.Z. Li, Wood-inspired nanocellulose aerogel adsorbents with excellent selective pollutants capture, superfast adsorption, and easy regeneration. J. Hazard. Mater. 415, 125612 (2021). https://doi.org/10.1016/j.jhazmat.2021.125612

    Article  CAS  PubMed  Google Scholar 

  20. O. Karatum, S.A. Steiner, J.S. Griffin, W.B. Shi, D.L. Plata, Flexible, mechanically durable aerogel composites for oil capture and recovery. ACS Appl. Mater. Interf. 8(1), 215–224 (2016). https://doi.org/10.1021/acsami.5b08439

    Article  CAS  Google Scholar 

  21. N. Husing, U. Schubert, Aerogels airy materials: chemistry, structure, and properties. Angew. Chem. Int. Edit. 37(1–2), 23–45 (1998). https://doi.org/10.1021/acsami.5b08439

    Article  CAS  Google Scholar 

  22. H.Q. Guo, M.A.B. Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton, M. Cakmak, Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl. Mater. Interf. 4(10), 5422–5429 (2012). https://doi.org/10.1021/am301347a

    Article  CAS  Google Scholar 

  23. S. Yun, H.J. Luo, Y.F. Gao, Low-density, hydrophobic, highly flexible ambientpressure- dried monolithic bridged silsesquioxane aerogels. J. Mater. Chem. A. 3(7), 3390–3398 (2015). https://doi.org/10.1039/c4ta05271d

    Article  CAS  Google Scholar 

  24. S.B. Jadhav, A. Makki, D. Hajjar, P.B. Sarawade, Synthesis of light weight recron fiber-reinforced sodium silicate based silica aerogel blankets at an ambient pressure for thermal protection. J. Porous Mat. 29, 957–969 (2022). https://doi.org/10.1007/s10934-022-01231-3

    Article  CAS  Google Scholar 

  25. D.J. Chen, K.Y. Dong, H.Y. Gao, T. Zhuang, X.B. Huang, G. Wang, Vacuum-dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement: performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors. New J. Chem. 43(5), 2204–2212 (2019). https://doi.org/10.1039/c8nj04038a

    Article  CAS  Google Scholar 

  26. J.F. Ren, X. Huang, J.J. Shi, W. Wang, J.N. Li, Y. Zhang, H.K. Chen, R.L. Han, G.X. Chen, Q.F. Li, Z. Zhou, Transparent, robust, and machinable hybrid silica aerogel with a “rigid-flexible” combined structure for thermal insulation, oil/water separation, and self-cleaning. J. Colloid Interf. Sci. 623, 1101–1110 (2022). https://doi.org/10.1016/j.jcis.2022.05.100

    Article  CAS  Google Scholar 

  27. Z. Wang, Z. Dai, J.J. Wu, N. Zhao, J. Xu, Vacuum-dried robust bridged silsesquioxane aerogels. Adv. Mater. 25(32), 4494–4497 (2013). https://doi.org/10.1002/adma.201301617

    Article  CAS  PubMed  Google Scholar 

  28. Z. Wang, D. Wang, Z.C. Qian, J. Guo, H.X. Dong, N. Zhao, J. Xu, Robust superhydrophobic bridged sils esquioxane aerogels with tunable performances and their applications. ACS Appl. Mater. Interf. 7(3), 2016–2024 (2015). https://doi.org/10.1021/am5077765

    Article  CAS  Google Scholar 

  29. Z.D. Shao, X.Y. He, Z.W. Niu, T. Huang, X. Cheng, Y. Zhang, Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths. Mater. Chem. Phys. 162, 346–353 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.077

    Article  CAS  Google Scholar 

  30. T. Linhares, M.T.P. de Amorim, L. Duraes, Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J. Mater. Chem. A. 7(40), 22768–22802 (2019). https://doi.org/10.1039/c9ta04811a

    Article  CAS  Google Scholar 

  31. J. Cai, S.L. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, L.N. Zhang, Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel. Angew. Chem. Int. Edit. 51(9), 2076–2079 (2012). https://doi.org/10.1002/anie.201105730

    Article  CAS  Google Scholar 

  32. H.L. Lin, S.H. Wang, Nafion/poly(vinyl alcohol) nano-fiber composite and Nafion/poly(vinyl alcohol) blend membranes for direct methanol fuel cells. J. Membr. Sci. 452, 253–262 (2014). https://doi.org/10.1016/j.memsci.2013.09.039

    Article  CAS  Google Scholar 

  33. C. Tran, V. Kalra, Co-continuous nanoscale assembly of Nafion-polyacrylonitrile blends within nanofibers: a facile route to fabrication of porous nanofibers. Soft Matter 9(3), 846–852 (2013). https://doi.org/10.1039/c2sm25976a

    Article  CAS  Google Scholar 

  34. C.L. Liu, X.F. Li, T. Liu, Z. Liu, N.N. Li, Y.F. Zhang, C.F. Xiao, X.S. Feng, Microporous CA/PVDF membranes based on electrospun nanofibers with controlled crosslinking induced by solvent vapor. J. Membr. Sci. 512, 1–12 (2016). https://doi.org/10.1016/j.memsci.2016.03.062

    Article  CAS  Google Scholar 

  35. L.C. Li, B. Yalcin, B.N. Nguyen, M.A.B. Meador, M. Cakmak, Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl. Mater. Interf. 1(11), 2491–2501 (2009). https://doi.org/10.1021/am900451x

    Article  CAS  Google Scholar 

  36. H.X. Zheng, H.R. Shan, Y. Bai, X.F. Wang, L.F. Liu, J.Y. Yu, B. Ding, Assembly of silica aerogels within silica nanofibers: towards a super-insulating flexible hybrid aerogel membrane. RSC Adv. 5(111), 91813–91820 (2015). https://doi.org/10.1039/c5ra18137b

    Article  CAS  Google Scholar 

  37. Y.Z. Lin, L.B. Zhong, S. Dou, Z.D. Shao, Q. Liu, Y.M. Zheng, Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ. Int. 128, 37–45 (2019). https://doi.org/10.1016/j.envint.2019.04.019

    Article  CAS  PubMed  Google Scholar 

  38. Y. Zhang, Y.L. Rena, X.H. Liu, T.G. Huo, Y.W. Qin, Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation. Appl. Surf. Sci. 428, 395–403 (2018). https://doi.org/10.1016/j.apsusc.2017.09.155

    Article  CAS  Google Scholar 

  39. S.A. Mahadik, M.S. Kavale, S.K. Mukherjee, A.V. Rao, Transparent Superhydrophobic silica coatings on glass by sol-gel method. Appl. Surf. Sci. 257(2), 333–339 (2010). https://doi.org/10.1016/j.apsusc.2010.06.062

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52370122), the STS Project of Science and Technology Program of Fujian Province (No. 2023T3014), the Science and Technology Planning Project of Fujian Province (No. 2021H0050), the Youth Innovation Promotion Association CAS (No. 2019307), the Science and Technology planning Project of Xiamen City (No. 3502Z20191021), the Science and Technology Innovation “2025” major program in Ningbo (No. 2022Z028).

Author information

Authors and Affiliations

Authors

Contributions

Yi-Ming Li: Data curation, Writing—original draft. Fang Liu: Data curation, Writing—original draft. Zhen-Zhen Jia: Investigation. Xuan Cheng: Investigation. Yu-Ming Zheng: Investigation, Funding acquisition. Zai-Dong Shao: Writing—review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Zai-Dong Shao.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest and no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 20158 KB)

Supplementary file2 (MP4 29994 KB)

Supplementary file3 (DOCX 391 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YM., Liu, F., Jia, ZZ. et al. In situ synthesis of three-dimensional electrospun polyacrylonitrile nanofiber network reinforced silica aerogel for high-efficiency oil/water separation. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01625-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01625-5

Keywords

Navigation