Skip to main content
Log in

Multidimensional TiO2 photocatalysts for the degradation of organic dyes in wastewater treatment

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The discharge of dye industry wastewater without any proper treatments has raised tremendous concerns due to its hazardous nature and potential risks. Photocatalytic degradation is a promising technology for environmentally friendly and sustainable treatment of dye pollutants. Nanomaterial-based photocatalysts have been successfully applied to treat industrial dye wastewater. Among them, titanium dioxide (TiO2) with diverse nanostructure and numerous advantages has garnered significant attentions. However, the morphological difference of TiO2 is of paramount importance for enhancing its degradation performance. This review provides an overview of recent advances in various forms of multidimensional TiO2, including 0D nanoparticles, 1D nanowires, nanotubes, nanofibers, and nanorods, 2D nanosheets and nanoplates, as well as assembled 3D micro-nano structures, for photocatalytic dye wastewater treatment. The article could briefly elaborate the conventional synthesis routes, advantages, challenges, and application areas of TiO2 in different dimensions, and compares their photocatalytic degradation performance and mechanisms. Simultaneously, these approaches of modified performances by doping metal ions and non-metal ions have emphatically involved over here. Noteworthily, the insights into the future trends, challenges, and prospects of multidimensional TiO2 materials have been also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. G.A. Kallawar, B.A. Bhanvase, A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environ. Sci. Pollut. Res. 31, 1748–1789 (2024)

    Article  Google Scholar 

  2. World Health Organization, Progress on household drinking water, sanitation and hygiene 2000–2020: five years into the SDGs (World Health Organization, 2021)

    Google Scholar 

  3. M. Islam, S. Kumar, N. Saxena, A. Nafees, Photocatalytic degradation of dyes present in industrial effluents: a review. ChemistrySelect 8, e202301048 (2023)

    Article  CAS  Google Scholar 

  4. G.N. Kokila, C. Mallikarjunaswamy, V.L. Ranganatha, A review on synthesis and applications of versatile nanomaterials. Inorg. Nano-Met. Chem. (2022). https://doi.org/10.1080/24701556.2022.2081189

    Article  Google Scholar 

  5. P.S. Goh, Z. Samavati, A.F. Ismail, B.C. Ng, M.S. Abdullah, N. Hilal, Modification of liquid separation membranes using multidimensional nanomaterials: revealing the roles of dimension based on classical titanium dioxide. Nanomaterials 13, 448 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Q. Chen, R. Tong, X. Chen, Y. Xue, Z. Xie, Q. Kuang, L. Zheng, Ultrafine ZnO quantum dot-modified TiO2 composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catal. Sci. Technol. 8, 1296–1303 (2018)

    Article  CAS  Google Scholar 

  7. V. Dutta, S. Sonu, P. Raizada, V.K. Thakur, T. Ahamad, S. Thakur, P. Singh, Prism-like integrated Bi2WO6 with Ag-CuBi2O4 on carbon nanotubes (CNTs) as an efficient and robust S-scheme interfacial charge transfer photocatalyst for the removal of organic pollutants from wastewater. Environ. Sci. Pollut. Res. 30, 124530–124545 (2023)

    Article  CAS  Google Scholar 

  8. S. Sharma, V. Dutta, P. Raizada, V.K. Thakur, A.K. Saini, D. Mittal, P. Singh, Synergistic photocatalytic dye mitigation and bacterial disinfection using carbon quantum dots decorated dual Z-scheme Manganese Indium Sulfide/Cuprous Oxide/Silver oxide heterojunction. Mater. Lett. 313, 131716 (2022)

    Article  CAS  Google Scholar 

  9. L. Buzzetti, G.E.M. Crisenza, P. Melchiorre, Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019)

    Article  CAS  Google Scholar 

  10. K. Qi, S. Liu, M. Qiu, Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chinese J. Catal. 39, 867–875 (2018)

    Article  CAS  Google Scholar 

  11. X. Li, A. Xu, H. Fan et al., 0D–2D S-scheme CdS/WO3 catalyst for efficiently boosting CO2 photoreduction. J. Power. Sources 545, 231923 (2022)

    Article  CAS  Google Scholar 

  12. L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018)

    Article  CAS  Google Scholar 

  13. S. Li, F. Wu, R. Lin et al., Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. Chem. Eng. J. 429, 132217 (2022)

    Article  CAS  Google Scholar 

  14. A.A.P. Khan, A. Sudhaik, P. Raizada et al., AgI coupled SiO2@CuFe2O4 novel photocatalytic nano-material for photo-degradation of organic dyes. Catal. Commun. 179, 106685 (2023)

    Article  CAS  Google Scholar 

  15. A. Kumar, P. Singh, A.A.P. Khan, Q. Van Le, V.H. Nguyen, S. Thakur, P. Raizada, CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: selectivity and mechanistic insights. Chem. Eng. J. 439, 135563 (2022)

    Article  CAS  Google Scholar 

  16. M. Malhotra, A. Sudhaik, P. Raizada et al., An overview on cellulose-supported photocatalytic materials for the efficient removal of toxic dyes. Ind. Crops Prod. 202, 117000 (2023)

    Article  CAS  Google Scholar 

  17. S. Riaz, S.J. Park, An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J. Ind. Eng. Chem. 84, 23–41 (2020)

    Article  CAS  Google Scholar 

  18. S.Y. Kim, T.G. Lee, S.A. Hwangbo et al., Effect of the TiO2 colloidal size distribution on the degradation of methylene blue. Nanomaterials 13, 302 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Yang, M. Gao, S.B. Jiang, X.J. Huo, R. Xia, Hysteretic phase transformation of two-dimensional TiO2. Mater. Lett. 232, 171–174 (2018)

    Article  CAS  Google Scholar 

  20. J.P. Dhal, S.K. Sahoo, S. Padhiari, T. Dash, G. Hota, In-situ synthesis of mixed phase electrospun TiO2 nanofibers: a novel visible light photocatalyst. SN Appl. Sci. 1, 1–12 (2019)

    Article  Google Scholar 

  21. J. Yang, P. Deng, X. Wang, J. Huang, P. Li, Modification and functional investigation of self-assembled two-dimensional TiO2 nanosheets with abundant hydroxyl groups. Solid State Sci. 101, 106151 (2020)

    Article  CAS  Google Scholar 

  22. J. Wu, P. Qiao, H. Li et al., Engineering surface defects on two-dimensional ultrathin mesoporous anatase TiO2 nanosheets for efficient charge separation and exceptional solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. C 8, 3476–3482 (2022)

    Article  Google Scholar 

  23. R. Edy, Y. Zhao, G.S. Huang, J.J. Shi, J. Zhang, A.A. Solovev, Y. Mei, TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Prog. Nat. Sci. 26, 493–497 (2016)

    Article  CAS  Google Scholar 

  24. T.N. San, L. Sikong, R. Kokoo, M. Khangkhamano, Photocatalytic activity enhancement of Dy-doped TiO2 nanoparticles hybrid with TiO2 (B) nanobelts under UV and fluorescence irradiation. Curr. Appl. Phys. 20, 249–254 (2020)

    Article  Google Scholar 

  25. R.V. Nair, M. Jijith, V.S. Gummaluri, C. Vijayan, A novel and efficient surfactant-free synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity. Opt. Mater. 55, 38–43 (2016)

    Article  CAS  Google Scholar 

  26. Y. Feng, H.H.M. Rijnaarts, D. Yntema et al., Applications of anodized TiO2 nanotube arrays on the removal of aqueous contaminants of emerging concern: a review. Water Res. 186, 116327 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. X. Hou, K. Aitola, P.D. Lund, TiO2 nanotubes for dye-sensitized solar cells—a review. Energy Sci. Eng. 9, 921–937 (2021)

    Article  CAS  Google Scholar 

  28. Y. Ren, Y. Dong, Y. Feng, J. Xu, Compositing two-dimensional materials with TiO2 for photocatalysis. Catalysts 8, 590 (2018)

    Article  Google Scholar 

  29. X. Yang, J. Yu, Y. Zhang, Y. Peng, Z. Li, C. Feng, Y. Wang, Visible-near-infrared-responsive g-C3N4Hx+ reduced decatungstate with excellent performance for photocatalytic removal of petroleum hydrocarbon. J. Hazard. Mater. 381, 120994 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. M.B. Poudel, A.A. Kim, Silver nanoparticles decorated TiO2 nanoflakes for antibacterial properties. Inorg. Chem. Commun. 152, 110675 (2023)

    Article  CAS  Google Scholar 

  31. N. Wang, W. Fu, M. Sun, J. Zhang, Q. Fang, Effect of different structured TiO2 particle on anticorrosion properties of waterborne epoxy coatings. Corros. Eng. Sci. Technol. 51, 365–372 (2016)

    Article  CAS  Google Scholar 

  32. W. Maziarz, TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Surf. Sci. 480, 361–370 (2019)

    Article  CAS  Google Scholar 

  33. G.A. Illarionov, S.M. Morozova, V.V. Chrishtop, M.A. Einarsrud, M.I. Morozov, Memristive TiO2: synthesis, technologies, and applications. Front. Chem. 8, 724 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Zhang, J. Yan, S. Pan, R. Wang, W. Fang, H. Zhang, Unraveling the energy storage mechanism of biphase TiO2 (B)/TiO2 (A) slurry and its application in lithium slurry battery. Mater. Today Energy 38, 101417 (2023)

    Article  CAS  Google Scholar 

  35. P. Cheng, M. Zheng, Y. Jin, Q. Huang, M. Gu, Preparation and characterization of silica-doped titania photocatalyst through sol-gel method. Mater. Lett. 57, 2989–2994 (2003)

    Article  CAS  Google Scholar 

  36. P.I. Gouma, M.J. Mills, Anatase-to-rutile transformation in titania powders. J. Am. Ceram. Soc. 84, 619–622 (2001)

    Article  CAS  Google Scholar 

  37. A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra, A. Agarwal, Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloys Compd. 549, 114–120 (2013)

    Article  CAS  Google Scholar 

  38. D. Wu, J. Liu, X. Zhao, Y. Chen, N. Ming, Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem. Mater. 18, 547–553 (2006)

    Article  CAS  Google Scholar 

  39. X. Meng, D. Wang, J. Liu, S.Y. Zhang, Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Mater. Res. Bull. 39, 2163–2170 (2004)

    Article  CAS  Google Scholar 

  40. H. Kurban, M. Dalkilic, S. Temiz, M. Kurban, Tailoring the structural properties and electronic structure of anatase, brookite and rutile phase TiO2 nanoparticles: DFTB calculations. Comput. Mater. Sci. 183, 109843 (2020)

    Article  CAS  Google Scholar 

  41. H. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B 104, 3481–3487 (2000)

    Article  CAS  Google Scholar 

  42. T. Balaganapathi, B. Kaniamuthan, S. Vinoth, T. Arun, P. Thilakan, Controlled synthesis of brookite and combined brookite with rutile phases of titanium di-oxide and its characterization studies. Ceram. Int. 43, 2438–2440 (2017)

    Article  CAS  Google Scholar 

  43. Y. Li, T.J. White, S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles. J. Solid State Chem. 177, 1372–1381 (2004)

    Article  CAS  Google Scholar 

  44. H. Zhang, J.F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. A 8, 2073–2076 (1998)

    Article  CAS  Google Scholar 

  45. K. Chalastara, F. Guo, S. Elouatik, G.P. Demopoulos, Tunable composition aqueous-synthesized mixed-phase TiO2 nanocrystals for photo-assisted water decontamination: comparison of anatase, brookite and rutile photocatalysts. Catalysts 10, 407 (2020)

    Article  CAS  Google Scholar 

  46. X. Wang, S. Shen, Z. Feng, C. Li, Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chinese J. Catal. 37, 2059–2068 (2016)

    Article  CAS  Google Scholar 

  47. Y. Duan, X. Chen, X. Zhang, W. Xiang, C. Wu, Influence of carbon source on the anatase and brookite mixed phase of the C-doped TiO2 nanoparticles and their photocatalytic activity. Solid State Sci. 86, 12–18 (2018)

    Article  CAS  Google Scholar 

  48. N.S. Jawale, S.S. Arbuj, G.G. Umarji, S.B. Rane, Synthesis of anatase/brookite mixed phase TiO2 nanostructures and its photocatalytic performance study. ChemistrySelect 6, 8861–8867 (2021)

    Article  CAS  Google Scholar 

  49. S. Zhang, X. Wang, Sub-1 nm: a critical feature size in materials science. Acc. Chem. Res. 3, 1285–1298 (2022)

    CAS  Google Scholar 

  50. T. Zhao, R. Qian, Y. Tang, J. Yang, Y. Dai, W.I. Lee, J.H. Pan, Controllable synthesis and crystallization of nanoporous TiO2 deep-submicrospheres and nanospheres via an organic acid-mediated sol-gel process. Langmuir 36, 7447–7455 (2020)

    Article  CAS  PubMed  Google Scholar 

  51. C.H. Lu, W.H. Wu, R.B. Kale, Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. J. Hazard. Mater. 154, 649–654 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Q. Wang, J. Huang, H. Sun, K.Q. Zhang, Y. Lai, Uniform carbon dots@TiO2 nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting. Nanoscale 9, 16046–16058 (2017)

    Article  CAS  PubMed  Google Scholar 

  53. J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, S. Cao, In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl. Catal. B Environ. 209, 311–319 (2017)

    Article  CAS  Google Scholar 

  54. S. Sun, R. Chen, Y. Wen et al., Trace amount of RuO2 loaded on TiO2 nanowires for efficient electrocatalytic degradation of ammonia nitrogen in wastewater. J. Alloys Compd. 928, 167058 (2022)

    Article  CAS  Google Scholar 

  55. M.S. Tien, L.Y. Lin, B.C. Xiao, S.T. Hong, Enhancing the contact area of Ti wire as photoanode substrate of flexible fiber-type dye-sensitized solar cells using the TiO2 nanotube growth and removal technique. Nanomaterials 9, 1521 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O. Saber, H.M. Kotb, M. Osama, H.A. Khater, An effective photocatalytic degradation of industrial pollutants through converting titanium oxide to magnetic nanotubes and hollow nanorods by kirkendall effect. Nanomaterials 12, 440 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. K.C. Naidu, N.S. Kumar, P. Banerjee, B.V.S. Reddy, A review on the origin of nanofibers/nanorods structures and applications. J. Mater. Sci. Mater. Med. 32, 68 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. G.H. Lee, Synthesis of TiO2 nanowires via thermal oxidation process in air. Mater. Res. Innov. 20, 421–424 (2016)

    Article  CAS  Google Scholar 

  59. Y. Wang, Y. Fu, C. Hou, Y. Zhai, F. Dang, H. Lin, Y. Fan, Characteristics of two-dimensional millimetric microarrays of TiO2 nanowires and their photocatalytic properties. RSC Adv. 6, 64079–64086 (2016)

    Article  CAS  Google Scholar 

  60. K. Lan, Y. Liu, W. Zhang et al., Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140, 4135–4143 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. J. Chen, X. Zhang, F. Bi, X. Zhang, Y. Yang, Y. Wang, A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125 (Ti)(MIL-125 (Ti)) and their enhanced visible light-driven photodegradation of tetracycline. J. Colloid Interface Sci. 571, 275–284 (2020)

    Article  CAS  PubMed  Google Scholar 

  62. J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165–173 (2015)

    Article  CAS  PubMed  Google Scholar 

  63. A.S. Lozhkomoev, S.O. Kazantsev, O.V. Bakina, A.V. Pervikov, V.R. Chzhou, N.G. Rodkevich, M.I. Lerner, Investigation of the peculiarities of oxidation of Ti/Al nanoparticles on heating to obtain TiO2/Al2O3 composite nanoparticles. J. Clust. Sci. (2022). https://doi.org/10.1007/s10876-022-02382-8

    Article  Google Scholar 

  64. C. Song, L. Wang, F. Gao, Q. Lu, Two-dimensional hollow TiO2 nanoplates with enhanced photocatalytic activity. Chem. Eur. J. 22, 6368–6373 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. M. Li, Y. Chen, W. Li et al., Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 13, 1604115 (2017)

    Article  Google Scholar 

  66. Y. Wu, Z. Liu, Y. Li, J. Chen, X. Zhu, P. Na, Construction of 2D–2D TiO2 nanosheet/layered WS2 heterojunctions with enhanced visible-light-responsive photocatalytic activity. Chinese J. Catal. 40, 60–69 (2019)

    Article  CAS  Google Scholar 

  67. C. Li, R. Hu, X. Lu, S. Bashir, J.L. Liu, Efficiency enhancement of photocatalytic degradation of tetracycline using reduced graphene oxide coordinated titania nanoplatelet. Catal. Today (2020). https://doi.org/10.1016/j.cattod.2019.06.038

    Article  PubMed  PubMed Central  Google Scholar 

  68. S. Bian, C. Zhou, P. Li, J. Liu, X. Dong, F. Xi, Graphene quantum dots decorated titania nanosheets heterojunction: efficient charge separation and enhanced visible-light photocatalytic performance. ChemCatChem 9, 3349–3357 (2017)

    Article  CAS  Google Scholar 

  69. Y. Du, X. Xu, L. Lin, M. Ge, D. He, 3D hierarchical flower-like rutile TiO2 nanospheres-based versatile photocatalyst. J. Mater. Sci. 53, 385–395 (2018)

    Article  CAS  Google Scholar 

  70. Y.N. Luo, Y. Li, L. Qian, L.L. Qian, X.T. Wang, J. Wang, C.W. Wang, Excellent photocatalytic performance from NiS decorated TiO2 nanoflowers with exposed {001} facets. Mater. Res. Bull. 130, 110945 (2020)

    Article  CAS  Google Scholar 

  71. A. Miquelot, O. Debieu, V. Rouessac et al., TiO2 nanotree films for the production of green H2 by solar water splitting: from microstructural and optical characteristics to the photocatalytic properties. Appl. Surf. Sci. 494, 1127–1137 (2019)

    Article  CAS  Google Scholar 

  72. K. Lv, J. Li, X. Qing, W. Li, Q. Chen, Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J. Hazard. Mater. 189, 329–335 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. Y. Deng, M. Xing, J. Zhang, An advanced TiO2/Fe2TiO5/Fe2O3 triple-heterojunction with enhanced and stable visible-light-driven fenton reaction for the removal of organic pollutants. Appl. Catal. B Environ. 211, 157–166 (2017)

    Article  CAS  Google Scholar 

  74. Y. Wang, M. Zhang, J. Li, H. Yang, J. Gao, G. He, Z. Sun, Construction of Ag@ AgCl decorated TiO2 nanorod array film with optimized photoelectrochemical and photocatalytic performance. Appl. Surf. Sci. 476, 84–93 (2019)

    Article  CAS  Google Scholar 

  75. J. Ni, J. Gao, X. Geng, D. He, X. Guo, Controllable synthesis of TiO2 nanoflowers and their morphology-dependent photocatalytic activities. Appl. Phys. A 123, 1–9 (2017)

    Article  CAS  Google Scholar 

  76. W. Zhou, X. Liu, J. Cui et al., Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties. CrystEngComm 13, 4557–4563 (2011)

    Article  CAS  Google Scholar 

  77. P. Zhou, Y. Xie, J. Fang et al., CdS quantum dots confined in mesoporous TiO2 with exceptional photocatalytic performance for degradation of organic polutants. Chemosphere 178, 1–10 (2017)

    Article  PubMed  Google Scholar 

  78. F. Chen, P. Fang, Z. Liu et al., Dimensionality-dependent photocatalytic activity of TiO2-based nanostructures: nanosheets with a superior catalytic property. J. Mater. Sci. 48, 5171–5179 (2013)

    Article  CAS  Google Scholar 

  79. S. Salameh, R. Scholz, J.W. Seo, L. Mädler, Contact behavior of size fractionated TiO2 nanoparticle agglomerates and aggregates. Powder Technol. 256, 345–351 (2014)

    Article  CAS  Google Scholar 

  80. J. Zhou, G. Zhao, G. Han, B. Song, Solvothermal growth of three-dimensional TiO2 nanostructures and their optical and photocatalytic properties. Ceram. Int. 39, 8347–8354 (2013)

    Article  CAS  Google Scholar 

  81. A.A. Dorothy, P. Panigrahi, Tuning optical properties of TiO2 by dimension reduction: from 3D bulk to 2D sheets along {001} and {101} plane. Mater. Res. Express 6, 1250f1 (2020)

    Article  Google Scholar 

  82. Z. Zhang, J. Du, J. Li et al., Polymer nanocomposites with aligned two-dimensional materials. Prog. Polym. Sci. 114, 101360 (2021)

    Article  CAS  Google Scholar 

  83. J.H. Chang, A.V. Ellis, Y.H. Hsieh, C.H. Tung, S.Y. Shen, Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD. Sci. Total. Environ. 407, 5914–5920 (2009)

    Article  CAS  PubMed  Google Scholar 

  84. P. Zeman, S. Takabayashi, Nano-scaled photocatalytic TiO2 thin films prepared by magnetron sputtering. Thin Solid Films 433, 57–62 (2003)

    Article  CAS  Google Scholar 

  85. W. Tan, L. Luo, Y. Zheng et al., Preparation and photocatalytic activity of heteropolyacid salt (POM)/TiO2 composites synthesized by solid phase combustion method. Process. Saf. Environ. Prot. 104, 558–563 (2016)

    Article  CAS  Google Scholar 

  86. M. Usman, M. Farooq, K. Hanna, Existence of SARS-CoV-2 in wastewater: implications for its environmental transmission in developing communities. Environ. Sci. Technol. (2020). https://doi.org/10.1021/acs.est.0c02777

    Article  PubMed  Google Scholar 

  87. C. Junin, C. Thanachayanont, C. Euvananont, K. Inpor, P. Limthongkul, Effects of precipitation, SolGel synthesis conditions, and drying methods on the properties of Nano-TiO2 for photocatalysis applications. Eur. J. Inorg. Chem. (2008). https://doi.org/10.1002/ejic.200701008

    Article  Google Scholar 

  88. C.R. Oliveira, M.A. Batistella, A.A. Souza, S.M. Ulson, Synthesis of superacid sulfated TiO2 prepared by sol-gel method and its use as a titania precursor in obtaining a kaolinite/TiO2 nano-hybrid composite. Powder Technol. 381, 366–380 (2021)

    Article  Google Scholar 

  89. W. Zhang, Y. Liu, H. Xin, Sol-gel preparation of hollow spherical x% B-TiO2 photocatalyst: the effect of boron content on RBR X-3B decoloration. Curr. Nanosci. 14, 209–215 (2018)

    Article  CAS  Google Scholar 

  90. J.M. Salazar, C.N. Duduman, M.J. Gonzalez, I. Palamarciuc, M.B. Pérez, I. Carcea, Research of obtaining TiO2 by sol-gel method using titanium isopropoxide TIP and tetra-n-butyl orthotitanate TNB. MSE 145, 072011 (2016)

    Google Scholar 

  91. M. Catauro, E. Tranquillo, P.G. Dal, M. Pasquali, A. DellEra, S. Vecchio Ciprioti, Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by the sol-gel method. Materials 11, 2364 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  92. X. Liu, Z. Xing, H. Zhang et al., Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. Chemsuschem 9, 1118–1124 (2016)

    Article  CAS  PubMed  Google Scholar 

  93. T.R. Sarker, F. Pattnaik, S. Nanda, A.K. Dalai, V. Meda, S. Naik, Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284, 131372 (2021)

    Article  CAS  PubMed  Google Scholar 

  94. Z. Essalhi, B. Hartiti, A. Lfakir, B. Mari, P. Thevenin, Optoelectronics properties of TiO2: Cu thin films obtained by sol-gel method. Opt. Quant. Electron. 49, 1–12 (2017)

    Article  CAS  Google Scholar 

  95. S. Mahshid, M. Askari, M.S. Ghamsari, N. Afshar, S. Lahuti, Mixed-phase TiO2 nanoparticles preparation using sol-gel method. J. Alloy. Compd. 478, 586–589 (2009)

    Article  CAS  Google Scholar 

  96. N. Bai, X. Liu, Z. Li, X. Ke, K. Zhang, Q. Wu, High-efficiency TiO2/ZnO nanocomposites photocatalysts by sol-gel and hydrothermal methods. J. Sol-Gel Sci. Technol. 99, 92–100 (2021)

    Article  CAS  Google Scholar 

  97. P. Kongsong, W. Jantaporn, M. Masae, Enhanced photocatalytic activity of Ni doped TiO2 nanowire-nanoparticle hetero-structured films prepared by hydrothermal and sol-gel methods. Surf. Interfaces 52, 486–492 (2020)

    Article  CAS  Google Scholar 

  98. X. Xu, L. Zhang, S. Zhang, Y. Wang, B. Liu, Y. Ren, Core-shell structured phenolic polymer@TiO2 nanosphere with enhanced visible-light photocatalytic efficiency. Nanomaterials 10, 467 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. R. Hidayat, G. Fadillah, S. Wahyuningsih, A control of TiO2 nanostructures by hydrothermal condition and their application: a short review. Mater. Sci. Eng. 578, 012031 (2019)

    Google Scholar 

  100. C.H. Nguyen, M.L. Tran, T.T. Van, R.S. Juang, Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 232, 115962 (2020)

    Article  CAS  Google Scholar 

  101. C.G. Song, J. Won, I. Jang, H. Choi, Fabrication of high-efficiency anatase TiO2 photocatalysts using electrospinning with ultra-violet treatment. J. Am. Ceram. Soc. 104, 4398–4407 (2021)

    Article  CAS  Google Scholar 

  102. J. Shen, Y.N. Wu, L. Fu, B. Zhang, F. Li, Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J. Mater. Sci. 49, 2303–2314 (2014)

    Article  CAS  Google Scholar 

  103. Y. Lu, X. Ou, W. Wang, J. Fan, K. Lv, Fabrication of TiO2 nanofiber assembly from nanosheets (TiO2-NFs-NSs) by electrospinning-hydrothermal method for improved photoreactivity. Chin. J. Catal. 2020(41), 209–218 (2020)

    Article  Google Scholar 

  104. W. Zhang, Y. He, Q. Qi, Synthesize of porous TiO2 thin film of photocatalyst by charged microemulsion templating. Mater. Chem. Phys. 2005(93), 508–515 (2005)

    Article  Google Scholar 

  105. C.H. Lu, W.H. Wu, R.B. Kale, Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. J. Hazard. Mater. 2008(154), 649–654 (2008)

    Article  Google Scholar 

  106. X. Ye, C. Zheng, L. Ma, X. Huang, Microemulsion-assisted hydrothermal preparation and infrared radiation property of TiO2 nanomaterials with tunable morphologies and crystal form. Mater. Sci. Semicond. Process. 2015(31), 295–301 (2015)

    Article  Google Scholar 

  107. R. Dong, S. Liu, Z. Li, Z. Chen, H. Zhang, TiO2 microspheres with variable morphology, size and density synthesized by a facile emulsion-mediated hydrothermal process. Mater. Lett. 123, 135–137 (2014)

    Article  CAS  Google Scholar 

  108. N. Naffati, M.J. Sampaio, E.S. Silva et al., Carbon-nanotube/TiO2 materials synthesized by a one-pot oxidation/hydrothermal route for the photocatalytic production of hydrogen from biomass derivatives. Mater. Sci. Semicond. Process. 115, 105098 (2020)

    Article  CAS  Google Scholar 

  109. K. Xu, Z. Liu, S. Qi, Z. Yin, S. Deng, M. Zhang, Z. Sun, Construction of Ag-modified TiO2/ZnO heterojunction nanotree arrays with superior photocatalytic and photoelectrochemical properties. RSC Adv. 10, 34702–34711 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. M.I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl. Catal. B 23, 89–114 (1999)

    Article  CAS  Google Scholar 

  111. J.Z. Heng, K.Y. Tang, M.D. Regulacio, M. Lin, X.J. Loh, Z. Li, E. Ye, Solar-powered photodegradation of pollutant dyes using silver-embedded porous TiO2 nanofibers. Nanomaterials 11, 856 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. S.L. Wang, X. Luo, X. Zhou et al., Fabrication and properties of a free-standing two-dimensional titania. J. Am. Chem. Soc. 139, 15414–15419 (2017)

    Article  CAS  PubMed  Google Scholar 

  113. X. Yang, Y. Min, S. Li, D. Wang, Z. Mei, J. Liang, F. Pan, Conductive Nb-doped TiO2 thin films with whole visible absorption to degrade pollutants. Catal. Sci. Technol. 8, 1357–1365 (2018)

    Article  CAS  Google Scholar 

  114. X. Bi, S. Yu, E. Liu, L. Liu, K. Zhang, J. Zang, Y. Zhao, Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf. A 603, 125193 (2020)

    Article  CAS  Google Scholar 

  115. Y. Sui, L. Wu, S. Zhong, Q. Liu, Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 480, 810–816 (2020)

    Article  Google Scholar 

  116. J. Chen, T. Ding, J. Cai et al., Synergistic effects of K addition and hydrogenation of TiO2 on photocatalytic hydrogen production under simulated solar light. Appl. Surf. Sci. 453, 101–109 (2018)

    Article  CAS  Google Scholar 

  117. W. Chen, Y. Wang, S. Liu et al., Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Appl. Surf. Sci. 445, 527–534 (2018)

    Article  CAS  Google Scholar 

  118. T.K. Rahul, N. Sandhyarani, Plasmonic and photonic effects on hydrogen evolution over chemically modified titania inverse opals. ChemNanoMat 4, 642–648 (2018)

    Article  CAS  Google Scholar 

  119. K. Osako, K. Matsuzaki, T. Susaki et al., Direct observation of interfacial charge transfer between Rutile TiO2 and Ultrathin CuOx film by visible-light illumination and its application for efficient photocatalysis. ChemCatChem 10, 3666–3670 (2018)

    Article  CAS  Google Scholar 

  120. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114, 13118–13125 (2010)

    Article  CAS  Google Scholar 

  121. C. Hu, X. Zhang, W. Li et al., Large-scale, ultrathin and (001) facet exposed TiO2 nanosheet superstructures and their applications in photocatalysis. J. Mater. Chem. A 2, 2040–2043 (2014)

    Article  CAS  Google Scholar 

  122. L. Ren, Y. Li, M. Mao, L. Lan, X. Lao, X. Zhao, Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticles. Appl. Surf. Sci. 490, 283–292 (2019)

    Article  CAS  Google Scholar 

  123. N.E. Fard, R. Fazaeli, A novel kinetic approach for photocatalytic degradation of azo dye with CdS and Ag/CdS nanoparticles fixed on a cement bed in a continuous-flow photoreactor. Int. J. Chem. Kinet. 48, 691–701 (2016)

    Article  CAS  Google Scholar 

  124. P.Z. Ranjbar, B. Ayati, H. Ganjidoust, Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO2 nanoparticles. J. Environ. Sci. 79, 213–224 (2019)

    Article  CAS  Google Scholar 

  125. B.B. Çırak, B. Caglar, T. Kılınç et al., Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity. Mater. Res. Bull. 109, 160–167 (2019)

    Article  Google Scholar 

  126. A.M. Omar, A. Hassen, O.I. Metwalli, M.R. Saber, S.R. Mohamed, A.S. Khalil, Construction of 2D layered TiO2@ MoS2 heterostructure for efficient adsorption and photodegradation of organic dyes. Nanotechnology 32, 335605 (2021)

    Article  CAS  Google Scholar 

  127. D. Arikal, A. Kallingal, Photocatalytic degradation of azo and anthraquinone dye using TiO2/MgO nanocomposite immobilized chitosan hydrogels. Environ. Technol. 42, 2278–2291 (2021)

    Article  CAS  PubMed  Google Scholar 

  128. X. Bi, G. Du, D. Sun et al., Room-temperature synthesis of yellow TiO2 nanoparticles with enhanced photocatalytic properties. Appl. Surf. Sci. 511, 145617 (2020)

    Article  CAS  Google Scholar 

  129. N. Qutub, P. Singh, S. Sabir, S. Sagadevan, W.C. Oh, Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite. Sci. Rep. 12, 5759 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. H.T.T. Thuong, C.T.T. Kim, L.N. Quang, H. Kosslick, Highly active brookite TiO2-assisted photocatalytic degradation of dyes under the simulated solar-UVA radiation. Prog. Nat. Sci.: Mater. 29, 641–647 (2019)

    Article  Google Scholar 

  131. J.M. Wu, Q.E. Zhao, Activation of carbon cloth and concurrent precipitation of titania nanowires for enhanced adsorption and photocatalysis performance. Appl. Surf. Sci. 527, 146779 (2020)

    Article  CAS  Google Scholar 

  132. M. Li, X. Zhang, Y. Liu, Y. Yang, Pr3+ doped biphasic TiO2 (rutile-brookite) nanorod arrays grown on activated carbon fibers: hydrothermal synthesis and photocatalytic properties. Appl. Surf. Sci. 440, 1172–1180 (2018)

    Article  CAS  Google Scholar 

  133. E. Montakhab, F. Rashchi, S. Sheibani, Modification and photocatalytic activity of open channel TiO2 nanotubes array synthesized by anodization process. Appl. Surf. Sci. 534, 147581 (2020)

    Article  CAS  Google Scholar 

  134. X. Wei, K. Ou, J. Wang et al., Novel visible light-induced ZnSe/TiO2 nanorod heterojunction for efficient photocatalysis and degradation of methyl orange. J. Mater. Sci. Mater. Electron. 34, 1339 (2023)

    Article  CAS  Google Scholar 

  135. R. Liu, Y. Bie, Y. Qiao, T. Liu, Y. Song, Design of g-C3N4/TiO2 nanotubes heterojunction for enhanced organic pollutants degradation in waste water. Mater. Lett. 251, 126–130 (2019)

    Article  CAS  Google Scholar 

  136. K. Chen, Z. Jiang, J. Qin, Y. Jiang, R. Li, H. Tang, X. Yang, Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets. Ceram. Int. 40, 16817–16823 (2014)

    Article  CAS  Google Scholar 

  137. X. Hu, H. Zhao, J. Tian, J. Gao, Y. Li, H. Cui, Synthesis of few-layer MoS2 nanosheets-coated TiO2 nanosheets on graphite fibers for enhanced photocatalytic properties. Sol. Energy Mater. Sol. Cells 172, 108–116 (2017)

    Article  CAS  Google Scholar 

  138. J. Poolwong, T. Kiatboonyarit, S. Achiwawanich, T. Butburee, P. Khemthong, S. Kityakarn, Three-dimensional hierarchical porous TiO2 for enhanced adsorption and photocatalytic degradation of remazol dye. Nanomaterials 11, 1715 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. R. Song, H. Chi, Q. Ma et al., Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis. J. Am. Chem. Soc. 143, 13664–13674 (2021)

    Article  CAS  PubMed  Google Scholar 

  140. A. Hoseini, B. Yarmand, Enhanced photocatalytic performance and photocorrosion stability of PEO-immobilized TiO2 photocatalyst using rGO/Fe2O3 sensitizers. Surf. Interfaces 42, 103424 (2023)

    Article  CAS  Google Scholar 

  141. X. Zhang, C. Bo, S. Cao et al., Stability improvement of a Pt/TiO2 photocatalyst during photocatalytic pure water splitting. J. Mater. Chem. A 10, 24381–24387 (2022)

    Article  CAS  Google Scholar 

  142. Y. Yu, D. Xu, Single-crystalline TiO2 nanorods: highly active and easily recycled photocatalysts. Appl. Catal. B Environ. 73, 166–171 (2007)

    Article  CAS  Google Scholar 

  143. Q. Zhang, Y. Fu, Y. Wu, T. Zuo, Lanthanum-doped TiO2 nanosheet film with highly reactive 001 facets and its enhanced photocatalytic activity. Eur. J. Inorg. Chem. 11, 1706–1711 (2016)

    Article  Google Scholar 

  144. S. Yao, S. Zhou, X. Zhou, J. Wang, X. Pu, TiO2-coated copper zinc tin sulfide photocatalyst for efficient photocatalytic decolourization of dye-containing wastewater. Mater. Chem. Phys. 256, 123559 (2020)

    Article  CAS  Google Scholar 

  145. M. Nasrollahzadeh, N. Shafiei, Z. Nezafat, N. Sadat Soheili Bidgoli, F. Soleimani, R.S. Varma, Valorisation of fruits, their juices and residues into valuable (nano) materials for applications in chemical catalysis and environment. Chem. Rec. 20, 1338–1393 (2020)

    Article  CAS  PubMed  Google Scholar 

  146. L. Ferrighi, M. Datteo, G. Fazio, C. Di Valentin, Catalysis under cover: enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 138, 7365–7376 (2016)

    Article  CAS  PubMed  Google Scholar 

  147. T.J. Al-Musawi, P. Rajiv, N. Mengelizadeh, I.A. Mohammed, D. Balarak, Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. J. Environ. Manage. 292, 112777 (2021)

    Article  PubMed  Google Scholar 

  148. X. Ye, L. Chen, Z. Wang, Q. Wang, X. Xiao, X. Liu, Facile in situ hydrothermal synthesis of titania nanosheets on reduced graphene oxide with photocatalytic activity. J. Photochem. Photobiol. A: Chem. 385, 112085 (2019)

    Article  CAS  Google Scholar 

  149. T. Liu, S. Sun, L. Zhou, P. Li, Z. Su, G. Wei, Polyurethane-supported graphene oxide foam functionalized with carbon dots and TiO2 particles for photocatalytic degradation of dyes. Appl. Sci. 9, 293 (2019)

    Article  CAS  Google Scholar 

  150. N.Y. Tashkandi, S.M. Albukhari, A.A. Ismail, Mesoporous TiO2 enhanced by anchoring Mn3O4 for highly efficient photocatalyst toward photo-oxidation of ciprofloxacin. Opt. Mater. 127, 112274 (2022)

    Article  CAS  Google Scholar 

  151. J. Wang, K. Wang, Z.H. He et al., Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00445-2

    Article  Google Scholar 

  152. Y. Liu, K. Lan, S. Li et al., Constructing three-dimensional mesoporous bouquet-posy-like TiO2 superstructures with radially oriented mesochannels and single-crystal walls. J. Am. Chem. Soc. 139, 517–526 (2017)

    Article  CAS  PubMed  Google Scholar 

  153. N.N. Jafri, J. Jaafar, F. Aziz et al., Development of free-standing titanium dioxide hollow nanofibers photocatalyst with enhanced recyclability. Membranes 12, 342 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Y. Liu, M. Wang, D. Li, F. Fang, W. Huang, Engineering self-doped surface defects of anatase TiO2 nanosheets for enhanced photocatalytic efficiency. Appl. Surf. Sci. 540, 148330 (2021)

    Article  CAS  Google Scholar 

  155. J. Zhou, B. Song, G. Zhao, G. Han, Effects of acid on the microstructures and properties of three-dimensional TiO2 hierarchical structures by solvothermal method. Nanoscale Res. Lett. 7, 1–10 (2012)

    Article  CAS  Google Scholar 

  156. R. Wang, B.C. Bukowski, J. Duan, J. Sui, R.Q. Snurr, J.T. Hupp, Art of architecture: efficient transport through solvent-filled metal–organic frameworks regulated by topology. Chem. Mater. 33, 6832–6840 (2021)

    Article  CAS  Google Scholar 

  157. Z. Lin, R. Wang, S. Tan, K. Zhang, Q. Yin, Z. Zhao, P. Gao, Nitrogen-doped hydrochar prepared by biomass and nitrogen-containing wastewater for dye adsorption: effect of nitrogen source in wastewater on the adsorption performance of hydrochar. J. Environ. Manage. 334, 117503 (2023)

    Article  CAS  PubMed  Google Scholar 

  158. G. Boczkaj, A. Fernandes, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem. Eng. J. 320, 608–633 (2017)

    Article  CAS  Google Scholar 

  159. A. Ahmed, M. Usman, B. Yu, X. Ding, Q. Peng, Y. Shen, H. Cong, Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. J. Photochem. Photobiol. B. 202, 111682 (2020)

    Article  CAS  PubMed  Google Scholar 

  160. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 1–10 (2017)

    Article  Google Scholar 

  161. A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 97, 111–128 (2021)

    Article  CAS  Google Scholar 

  162. M. Ye, J. Pan, Z. Guo, X. Liu, Y. Chen, Effect of ball milling process on the photocatalytic performance of CdS/TiO2 composite. Nanotechnol. Rev. 9, 558–567 (2020)

    Article  CAS  Google Scholar 

  163. R. Hossain, M.A. Uddin, M.A. Khan, Mechanistic understanding in manipulating energetics of TiO2 for photocatalysis. J. Phys. Chem. C (2023). https://doi.org/10.1021/acs.jpcc.2c06981

    Article  Google Scholar 

  164. Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. J. Photochem. Photobiol. A 183, 218–224 (2006)

    Article  CAS  Google Scholar 

  165. N.T. Hoa, Z. Lee, E.T. Kim, Enhanced photocatalytic properties of TiO2 nanobelts via in situ doping of C and Fe. J. Electrochem. Soc. 159, K42 (2011)

    Article  Google Scholar 

  166. Y. Li, D.D. Cheng, Y. Luo, L.X. Yang, Coaxial Fe2O3/TiO2 nanotubes for enhanced photo-Fenton degradation of electron-deficient organic contaminant. Rare Met. 40, 3543–3553 (2021)

    Article  CAS  Google Scholar 

  167. I.H. Chowdhury, S. Ghosh, S. Basak, M.K. Naskar, Mesoporous CuO-TiO2 microspheres for efficient catalytic oxidation of CO and photodegradation of methylene blue. J. Phys. Chem. Solids 104, 103–110 (2017)

    Article  CAS  Google Scholar 

  168. Y.R. Jia, Z.G. Wu, Y. Wang et al., Preparation and photocatalytic properties of SnO2-TiO2 composite semiconductor photocatalysts. Technol. Water Treat. 43, 36–39 (2017)

    CAS  Google Scholar 

  169. G. Cheng, X.D. Zhou et al., Preparation of ZnO-TiO2 coupled-semiconductor and photocatalytic activity. J. Xi’an Univ. Technol. 25, 8–12 (2009)

    CAS  Google Scholar 

  170. A.H. Kianfar, M.A. Arayesh, Synthesis, characterization and investigation of photocatalytic and catalytic applications of Fe3O4/TiO2/CuO nanoparticles for degradation of MB and reduction of nitrophenols. J. Environ. Chem. Eng. 8, 103640 (2020)

    Article  CAS  Google Scholar 

  171. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52, 3581–3599 (2013)

    Article  CAS  Google Scholar 

  172. R. Drunka, J. Grabis, A. Krumina, Preparation of Au, Pt, Pd and Ag doped TiO2 nanofibers and their photocatalytic properties under LED illumination. Key Eng. Mater. 762, 283–287 (2018)

    Article  Google Scholar 

  173. I. Khan, K. Kang, A. Khan et al., Efficient CO2 conversion and organic pollutants degradation over Sm3+ doped and rutile TiO2 nanorods decorated-GdFeO3 nanorods. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.05.079

    Article  Google Scholar 

  174. H. Fang, M.J. Wilhelm, J. Ma et al., Ag nanoplatelets as efficient photosensitizers for TiO2 nanorods. J. Chem. Phys. (2022). https://doi.org/10.1063/5.0074322

    Article  PubMed  Google Scholar 

  175. S. Veziroglu, A.L. Obermann, M. Ullrich et al., Photodeposition of Au nanoclusters for enhanced photocatalytic dye degradation over TiO2 thin film. Appl. Mater. Interfaces 12, 14983–14992 (2020)

    Article  CAS  Google Scholar 

  176. S. Liu, G. Liu, Q. Feng, Al-doped TiO2 mesoporous materials: synthesis and photodegradation properties. J. Porous Mater. 17, 197–206 (2010)

    Article  Google Scholar 

  177. N.U. Saqib, R. Adnan, I. Shah, A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environ. Sci. Pollut. Res. 23, 15941–15951 (2016)

    Article  CAS  Google Scholar 

  178. G. Shang, H. Fu, S. Yang, T. Xu, Mechanistic study of visible-light-induced photodegradation of 4-chlorophenol by TiO2− x N x with low nitrogen concentration. Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/759306

    Article  Google Scholar 

  179. Y. Okour, H.K. Shon, I.J. El Saliby, R. Naidu, J.B. Kim, J.H. Kim, Preparation and characterisation of titanium dioxide (TiO2) and thiourea-doped titanate nanotubes prepared from wastewater flocculated sludge. Bioresour. Technol. 101, 1453–1458 (2010)

    Article  CAS  PubMed  Google Scholar 

  180. J. Xu, Y. Ao, M. Chen, D. Fu, Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity. J. Alloy. Compd. 484, 73–79 (2009)

    Article  CAS  Google Scholar 

  181. C. Xie, S. Yang, J. Shi, C. Niu, Highly crystallized C-doped mesoporous anatase TiO2 with visible light photocatalytic activity. Catalysts 6, 117 (2016)

    Article  Google Scholar 

  182. Q. Xiang, J. Yu, W. Wang, M. Jaroniec, Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem. Commun. 47, 6906–6908 (2011)

    Article  CAS  Google Scholar 

  183. D. Ma, J. Li, A. Liu, C. Chen, Carbon gels-modified TiO2: promising materials for photocatalysis applications. Materials 13, 1734 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Y. Li, H. Zhao, M. Yang, TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. J. Colloid Interface Sci. 508, 500–507 (2017)

    Article  CAS  PubMed  Google Scholar 

  185. S. Li, G. Li, Q. Chen, F. Wang, Facile green synthesis of degraded-PVA coated TiO2 nanoparticles with enhanced photocatalytic activity under visible light. J. Phys. Chem. Solids 129, 92–98 (2019)

    Article  CAS  Google Scholar 

  186. Y. Fang, X. Su, Z. Quan, C. Xiao, Facile preparation of PVA-AA/TiO2 composite gel particles and their tunable photo-catalytic property for the degradation of methyl orange. J. Wuhan Univ. Technol. Mater. Sci. Ed. 34, 1479–1483 (2019)

    Article  CAS  Google Scholar 

  187. G. Zhang, D. Wang, J. Yan, Y. Xiao, W. Gu, C. Zang, Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics. Materials 12, 2010 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. J.A. Oyetade, R.L. Machunda, A. Hilonga, Photocatalytic degradation of azo dyes in textile wastewater by polyaniline composite catalyst-a review. Sci. Afr. 17, e01305 (2022)

    CAS  Google Scholar 

  189. J.A. Oyetade, R.L. Machunda, A. Hilonga, Functional impacts of polyaniline in composite matrix of photocatalysts: an instrumental overview. RSC Adv. 13, 15467–15489 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. F. Vento, A. Nicosia, L. Mezzina et al., Photocatalytic activity of TiO2-containing nanocomposites versus the chemical nature of the polymeric matrices: a comparison. Adv. Mater. Technol. 8, 2300391 (2023)

    Article  CAS  Google Scholar 

  191. L.A. Shah, T. Malik, M. Siddiq, A. Haleem, M. Sayed, A. Naeem, TiO2 nanotubes doped poly (vinylidene fluoride) polymer membranes (PVDF/TNT) for efficient photocatalytic degradation of brilliant green dye. J. Environ. Chem. Eng. 7, 103291 (2019)

    Article  CAS  Google Scholar 

  192. S. Abdelnasser, G. Park, H. Han, R. Toth, H. Yoon, Enhanced photocatalytic performance of poly (3, 4-ethylenedioxythiophene)-coated TiO2 nanotube electrodes. Synth. Met. 251, 120–126 (2019)

    Article  CAS  Google Scholar 

  193. W. Yan, Q. Chen, M. Du, K.M. Yang, X. Cai, X. Meng, L. Wang, Highly transparent poly (vinyl alcohol)(PVA)/TiO2 nanocomposite films with remarkable photocatalytic performance and recyclability. J. Nanosci. Nanotechnol. 18, 5660–5667 (2018)

    Article  CAS  PubMed  Google Scholar 

  194. J.A. Lee, K.C. Krogman, M. Ma, R.M. Hill, P.T. Hammond, G.C. Rutledge, Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv. Mater. 21, 1252–1256 (2009)

    Article  CAS  Google Scholar 

  195. B. Luo, W. Wang, Q. Wang et al., Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes. Chem. Eng. J. 460, 141329 (2023)

    Article  CAS  Google Scholar 

  196. J. Lei, L. Deng, X. Li, Y. Xu, D. Li, C. Mu et al., Comparative study of the physicochemical and photocatalytic properties of water-soluble polymer-capped TiO2 nanoparticles. Environ. Sci. Pollut. Res. 25, 26259–26266 (2018)

    Article  CAS  Google Scholar 

  197. P. Liu, H. Liu, G. Liu, K. Yao, W. Lv, Preparation of TiO2 nanotubes coated on polyurethane and study of their photocatalytic activity. Appl. Surf. Sci. 258, 9593–9598 (2012)

    Article  CAS  Google Scholar 

  198. X. Hu, Q. Zhu, Z. Gu et al., Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular photocatalytic-ultrasonic system. Ultrason. Sonochem. 36, 301–308 (2017)

    Article  CAS  PubMed  Google Scholar 

  199. X. Xu, L. Zhang, S. Zhang, Y. Wang, B. Liu, Y. Ren, Core-shell structured phenolic polymer@ TiO2 nanosphere with enhanced visible-light photocatalytic efficiency. Nanomaterials 10, 467 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Y. Slimani, M.A. Almessiere, M.J. Mohamed et al., Synthesis of Ce and Sm Co-Doped TiO2 nanoparticles with enhanced photocatalytic activity for rhodamine B dye degradation. Catalysts 13, 668 (2023)

    Article  CAS  Google Scholar 

  201. L. Ji, S. Zhou, X. Liu, M. Gong, T. Xu, Synthesis of carbon-and nitrogen-doped TiO2/carbon composite fibers by a surface-hydrolyzed PAN fiber and their photocatalytic property. J. Mater. Sci. 55, 2471–2481 (2020)

    Article  CAS  Google Scholar 

  202. A. Sinhmar, H. Setia, V. Kumar, A. Sobti, A.P. Toor, Enhanced photocatalytic activity of nickel and nitrogen codoped TiO2 under sunlight. Environ. Technol. Innov. 18, 100658 (2020)

    Article  Google Scholar 

  203. X.G. Zhao, L. Huang, Q. Iridium, Carbon and nitrogen multiple-doped TiO2 nanoparticles with enhanced photocatalytic activity. Ceram. Int. 43, 3975–3980 (2017)

    Article  CAS  Google Scholar 

  204. P. Wang, Q. Wang, Z.Y. Ding et al., Preparation and photocatalytic properties of N, Bi co-doped TiO2 visible-light photocatalysts. Ind. Catal. 24, 39–45 (2016)

    Google Scholar 

  205. F. Mezzat, H. Zaari, K.A. El, A. Benyoussef, Effect of metal and non metal doping of TiO2 on photocatalytic activities: Ab initio calculations. Opt. Quantum Electron. 53, 1–14 (2021)

    Article  Google Scholar 

  206. H. Yang, B. Yang, W. Chen, J. Yang, Preparation and photocatalytic activities of TiO2-based composite catalysts. Catalysts 12, 1263 (2022)

    Article  CAS  Google Scholar 

  207. E.S. Gillman, D. Costello, M. Moreno, A. Raspopin, R. Kasica, L. Chen, Polymer-assisted conformal coating of TiO2 thin films. J. Appl. Phys. 108, 044310 (2010)

    Article  Google Scholar 

  208. P. Monreal-Pérez, J.R. Isasi, J. González-Benito, D. Olmos, G. González-Gaitano, Cyclodextrin-grafted TiO2 nanoparticles: synthesis, complexation capacity, and dispersion in polymeric matrices. Nanomaterials 8, 642 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  209. T. Huang, J. Lu, R. Xiao, Q. Wu, W. Yang, Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate. Appl. Surf. Sci. 403, 584–589 (2017)

    Article  CAS  Google Scholar 

  210. Z. Liu, R. Liu, Y. Yi, W. Han, F. Kong, S. Wang, Photocatalytic degradation of dyes over a xylan/PVA/TiO2 composite under visible light irradiation. Carbohydr. Polym. 223, 115081 (2019)

    Article  CAS  PubMed  Google Scholar 

  211. X. Zhao, C. Karakaya, M. Qian, R. Zou, W. Zhang, Z. Lu, D. Maiti, A. Samanta, W. Wan, X. Liu, A. Tiplea, Y. Li, S. Cui, C. Wang, H. Lei, S. Bankston, S. Yilmaz, J.G. Chen, S. Ozcan, 3D printing synthesis of catalysts. Mater. Today Sustain. (2014). https://doi.org/10.1016/j.mtsust.2024.100746

    Article  Google Scholar 

  212. C. Wang, Y. Zhan, Z. Wang, TiO2, MoS2, and TiO2/MoS2 heterostructures for use in organic dyes degradation. ChemistrySelect 3, 1713–1718 (2018)

    Article  CAS  Google Scholar 

  213. T.U. Rahman, H. Roy, A.Z. Shoronika et al., Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. J. Mol. Liq. 388, 122764 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study received funding from the Forestry Science and Technology Innovation of Hunan Province in China (No. XLK202107-3).

Funding

The National Natural Science Foundation of China, No. 32171709, 32271791.

Author information

Authors and Affiliations

Authors

Contributions

W.X., G.L., Y.L., Y.B., Y.L., C.W., and J.H. wrote the main manuscript text. T.L. and S.C. prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jinbo Hu.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submzitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Liu, G., Liu, Y. et al. Multidimensional TiO2 photocatalysts for the degradation of organic dyes in wastewater treatment. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01619-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01619-3

Keywords

Navigation