Skip to main content

Advertisement

Log in

Mesoporous SBA-15 supported Ru nanoparticles for effective hydrogenation of ethyl levulinate at room temperature

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous materials have found wide application as catalyst supports. In this study, we have shown that Ru nanoparticles supported on SBA-15 are highly active toward hydrogenation of biomass-derived ethyl levulinate (EL) even at room temperature. A series of Ru loaded SBA-15 (xRu-SBA-15, x = 1, 3, and 5 wt% Ru) were prepared by a deposition-precipitation method and further reduced with NaBH4. TEM images suggest that the reduction with NaBH4 led to the formation of Ru particle with size in range of 1–2 nm. These finely distributed Ru nanoparticles on SBA-15 showed high activity for hydrogenation of C=O group of EL at room temperature and a low H2 pressure (0.5 MPa), with ethyl hydroxylpentanonate (EHP) selectivity of 97%. Kinetics study showed that the Ru nanoparticles in proper size (2.1 ± 0.1 nm) gave a low apparent activation energy (Ea) about 20 kJ/mol for C=O hydrogenation. Moreover, 3Ru-SBA-15 displayed a good reusability, on which the EL conversion remained stable (− 80%) after five recycles. The produced EHP could be further converted to γ-valerolactone (GVL) over HZMS-5 efficiently upon thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are available from the corresponding author on reasonable request.

References

  1. H. Rasmussen, H.R. Sorensen, A.S. Meyer, Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr. Res. 385, 45–57 (2014)

    CAS  PubMed  Google Scholar 

  2. M. Stocker, Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem. Int. Ed. 47, 9200–9211 (2008)

    CAS  Google Scholar 

  3. J.J. Bozell, G.R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s top 10 revisited. Green. Chem. 12, 539–554 (2010)

    CAS  Google Scholar 

  4. G.W. Huber, R.D. Cortright, J.A. Dumesic, Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates. Angew Chem. Int. Ed. 43, 1549–1551 (2004)

    CAS  Google Scholar 

  5. G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science. 308, 1446–1450 (2005)

    CAS  PubMed  Google Scholar 

  6. A. Corma, S. Iborra, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007)

    CAS  PubMed  Google Scholar 

  7. J. Han, S.M. Sen, D.M. Alonso, J.A. Dumesic, C.T. Maravelias, A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels. Green. Chem. 16, 653–661 (2014)

    CAS  Google Scholar 

  8. C.H. Zhou, X. Xia, C.X. Lin, D.S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011)

    CAS  PubMed  Google Scholar 

  9. T. Pan, J. Deng, Q. Xu, Y. Xu, Q.X. Guo, Y. Fu, Conversion of carbohydrate biomass to γ-valerolactone by using water-soluble and reusable iridium complexes in acidic aqueous media. Green. Chem. 15, 2967–2974 (2013)

    CAS  Google Scholar 

  10. D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green. Chem. 15, 584–595 (2013)

    CAS  Google Scholar 

  11. X. Tang, X. Zeng, Z. Li, L. Hu, Y. Sun, S. Liu, T. Lei, L. Lin, Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew. Sust Energ. Rev. 40, 608–620 (2014)

    CAS  Google Scholar 

  12. I.T. Horváth, H. Mehdi, V. Fábos, L. Boda, L.T. Mika, Horváth, γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green. Chem. 10, 238–242 (2008)

    Google Scholar 

  13. J.Q. Bond, D.M. Alonso, D. Wang, R.M. West, J.A. Dumesic, Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science. 327, 1110–1114 (2010)

    CAS  PubMed  Google Scholar 

  14. Y. Cen, S. Zhu, J. Guo, J. Chai, W. Jiao, J. Wang, W. Fan, Supported cobalt catalysts for the selective hydrogenation of ethyl levulinate to various chemicals. RSC Adv. 8, 9152–9160 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. V.V. Kumar, G. Naresh, M. Sudhakar, C. Anjaneyulu, S.K. Bhargava, J. Tardio, V.K. Reddy, A.H. Padmasric, A. Venugopal, An investigation on the influence of support type for Ni catalysed vapour phase hydrogenation of aqueous levulinic acid to γ-valerolactone. RSC Adv. 6, 9872–9879 (2016)

    CAS  Google Scholar 

  16. R. Zhang, Y. Ma, F. You, T. Peng, Z. He, K. Li, Exploring to direct the reaction pathway for hydrogenation of levulinic acid into g-valerolactone for future Clean-Energy vehicles over a magnetic Cu-Ni catalyst. Int. J. Hydrogen Energy. 42, 25185e94 (2017)

    Google Scholar 

  17. A. Garcia, P.J. Miguel, M.P. Pico, I. Alvarez-Serrano, M.L. Lopez, T. Garcia, B. Solson, Low temperature conversion of levulinic acid into γ-valerolactone using zn to generate hydrogen from water and nickel catalysts supported on sepiolite. Appl. Catal. A 623, 118276 (2021)

    CAS  Google Scholar 

  18. Z. Li, M. Zuo, Y. Jiang, X. Tang, X. Zeng, Y. Sun, T. Lei, L. Lin, Stable and efficient CuCr catalyst for the solvent-free hydrogenation of biomass derived ethyl levulinate to γ-valerolactone as potential biofuel candidate. Fuel. 175, 232–239 (2016)

    CAS  Google Scholar 

  19. S. Ishikawa, D.R. Jones, S. Iqbal, C. Reece, D.J. Morgan, D.J. Willock, P.J. Miedziak, J.K. Bartley, J.K. Edwards, T. Murayama, W. Ueda, Hutchings. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green. Chem. 19, 225–236 (2017)

    CAS  Google Scholar 

  20. D. Ren, C. Zhao, N. Zhang, K. Norinaga, X. Zeng, Z. Huo, Catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone over air-stable skeletal cobalt catalyst. J. Environ. Chem. Eng. 10, 107188 (2022)

    CAS  Google Scholar 

  21. C. Michel, P. Gallezot, Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds? ACS Catal. 5, 4130–4132 (2015)

    CAS  Google Scholar 

  22. A.M. Galletti, C. Antonetti, V. De Luise, M.A. Martinelli, Sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid. Green. Chem. 14, 688–694 (2012)

    CAS  Google Scholar 

  23. M. Sudhakar, V.V. Kumar, G. Naresh, M.L. Kantam, S.K. Bhargava, A. Venugopal, Vapor phase hydrogenation of aqueous levulinic acid over hydroxyapatite supported metal (M = pd, pt, Ru, Cu, Ni) catalysts. Appl. Catal. B 180, 113–120 (2016)

    CAS  Google Scholar 

  24. L. Negahdar, M.G. Al-Shaal, F.J. Holzhäuser, R. Palkovits, Kinetic analysis of the catalytic hydrogenation of alkyl levulinates to γ-valerolactone. Chem. Eng. Sci. 158, 545–551 (2017)

    CAS  Google Scholar 

  25. Y. Lu, Y. Wang, Q. Tang, Q. Cao, W. Fang, Synergy in Sn-Mn oxide boosting the hydrogenation catalysis of supported pt nanoparticles for selective conversion of levulinic acid. Appl. Catal. B 300, 120746 (2022)

    CAS  Google Scholar 

  26. J.M. Nadgeri, N. Hiyoshi, A. Yamaguchi, O. Sato, M. Shirai, Liquid phase hydrogenation of methyl levulinate over the mixture of supported ruthenium catalyst and zeolite in water. Appl. Catal. A 470, 215–220 (2014)

    CAS  Google Scholar 

  27. M. Wachała, J. Grams, W. Kwapinski, A.M. Ruppert, Influence of ZrO2 on catalytic performance of Ru catalyst in hydrolytic hydrogenation of cellulose towards γ-valerolactone. Int. J. Hydrogen Energy. 41, 8688–8695 (2016)

    Google Scholar 

  28. A.S. Amarasekara, M.A. Hasan, Pd/C catalyzed conversion of levulinic acid to γ-valerolactone using alcohol as a hydrogen donor under microwave conditions. Catal. Commun. 60, 5–7 (2015)

    CAS  Google Scholar 

  29. J.J. Musci, M. Montana, A.B. Merlo, E. Rodriguez-Aguado, J.A. Cecillia, E. Rodriguez-Castellon, I.D. Lick, M.L. Casella, Supported ruthenium catalysts for the aqueous-phase selective hydrogenation of furfural to furfuryl alcohol. Catal. Today. 394–396, 81–93 (2022)

    Google Scholar 

  30. X. Guo, S. Zhu, M. Dong, J. Wang, W. Fan, Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone. J. Catal. 389, 60–70 (2020)

    Google Scholar 

  31. M. Davidson, Y. Ji, G.T. Leong, N.C. Kovach, B.G. Trewyn, R.M. Richards, Hybrid mesoporous silica/nobel-metal nanoparticle materials-synthesis and catalytic applications. ACS Appl. Nano Mater. 1, 4386–4400 (2018)

    CAS  Google Scholar 

  32. S. Kumaravel, S. Thiripuranthagan, E. Erusappan, M. Durai, Mesoporous Ru/Sn-SBA-15 catalysts: synthesis, characterization and catalytic activity towards hydrogenation of levulinic acid. J. Porous Mater. 29, 1083–1095 (2022)

    CAS  Google Scholar 

  33. V. Mohan, C.V. Pramod, M. Suresh, K.H.P. Reddy, B.D. Raju, K.S.R. Rao, Advantage of Ni/SBA-15 catalyst over Ni/MgO catalyst in terms of catalyst stability due to release of water during nitrobenzene hydrogenation to aniline. Catal. Commun. 18, 89–92 (2012)

    CAS  Google Scholar 

  34. M. Varkolu, H.B. Bathula, Y.W. Suh, D.R. Burri, S.R.R. Kamaraju, Hydrogenation of levulinic acid with and without external hydrogen over Ni/SBA–15 catalyst. App Petrochem. Res. 8, 153–162 (2018)

    CAS  Google Scholar 

  35. M. Varkolu, V. Velpula, S. Ganji, D.R. Burri, S.R.R. Kamaraju, Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid. RSC Adv. 5, 57201–57210 (2015)

    CAS  Google Scholar 

  36. C.M.A. Parlett, D.W. Bruce, N.S. Hondow, A.F. Lee, K. Wilson, Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas. ACS Catal. 1, 636–640 (2011)

    CAS  Google Scholar 

  37. X. Hu, C.Z. Li, Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green. Chem. 13, 1676–1679 (2011)

    CAS  Google Scholar 

  38. S. Saravanamurugan, A. Riisager, Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catal. Commun. 17, 71–75 (2012)

    CAS  Google Scholar 

  39. A.M. Hengne, C.V. Rode, Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone. Green. Chem. 14, 1064–1072 (2012)

    CAS  Google Scholar 

  40. S. Gundekari, K. Srinivasan, In situ generated Ni(0)@boehmite from NiAl-LDH: An efficient catalyst for selective hydrogenation of biomass derived levulinic acid to γ-valerolactone. Catal. Commun. 102, 40–43 (2017)

    CAS  Google Scholar 

  41. L. Zhang, J. Mao, S. Li, J. Yin, X. Sun, X. Guo, C. Song, J. Zhou, Hydrogenation of levulinic acid into gamma-valerolactone over in situ reduced CuAg bimetallic catalyst: strategy and mechanism of preventing Cu leaching. Appl. Catal. B: Environ. 232, 1–10 (2018)

    CAS  Google Scholar 

  42. J. Zheng, J. Zhu, X. Xu, W. Wang, J. Li, Y. Zhao, K. Tang, Q. Song, X. Qi, D. Kong, Y. Tang, Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Sci. Rep. 6, 28898 (2016)

    PubMed  PubMed Central  Google Scholar 

  43. Q. Shen, Y. Zhang, Y. Zhang, S. Tan, J. Chen, Transformations of biomass-based levulinate ester into γ-valerolactone and pyrrolidones using carbon nanotubes-grafted N-heterocyclic carbene ruthenium complexes. J. Energy Chem. 39, 29–38 (2019)

    Google Scholar 

  44. A.M. Hengne, N.S. Biradar, C.V. Rode, Surface species of supported ruthenium catalysts in selective hydrogenation of levulinic esters for bio-refinery application. Catal. Lett. 142, 779–787 (2012)

    CAS  Google Scholar 

  45. Y. Li, X. Lan, B. Liu, T. Wang, Synthesis of γ-valerolactone from ethyl levulinate hydrogenation and ethyl 4-hydroxypentanoate lactonization over supported Cu-Ni bimetallic, bifunctional catalysts. J. Indust Eng. Chem. 107, 215–223 (2022)

    CAS  Google Scholar 

  46. Z. Yang, Y.B. Huang, Q.X. Guo, Y. Fu, RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chem. Commun. 49, 5328–5330 (2013)

    CAS  Google Scholar 

  47. C. Moreno-Marrodan, P. Barbaro, Energy efficient continuous production of γ-valerolactone by bifunctional metal/acid catalysis in one pot. Green. Chem. 16, 3434–3438 (2014)

    CAS  Google Scholar 

  48. M. Besson, P. Gallezot, C. Pinel, Conversion of biomass into chemicals over metal catalysts. Chem. Rev. 114, 1827–1870 (2014)

    CAS  PubMed  Google Scholar 

  49. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science. 279, 548–552 (1998)

    CAS  PubMed  Google Scholar 

  50. A. Primo, P. Concepcion, A. Corma, Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chem. Commun. 47, 3613–3615 (2011)

    CAS  Google Scholar 

  51. T. Lopez, P. Bosch, M. Asomoza, R. Gomez, Ru/SiO2-impregnated and sol-gel-prepared catalysts: synthesis, characterization, and catalytic properties. J. Catal. 133, 247–259 (1992)

    CAS  Google Scholar 

  52. H.G. Manyar, D. Weber, H. Daly, J.M. Thompson, D.W. Rooney, L.F. Gladden, E. Hugh Stitt, J. Jose Delgado, S. Bernal, C. Hardacre, Deactivation and regeneration of ruthenium on silica in the liquid-phase hydrogenation of butan-2-one. J. Catal. 265, 80–88 (2009)

    CAS  Google Scholar 

  53. B. Bachillerbaeza, A. Guerreroruiz, I. Rodriguezramos, Ruthenium-supported catalysts for the stereoselective hydrogenation of Paracetamol to 4-trans-acetamidocyclohexanol: effect of support, metal precursor, and solvent. J. Catal. 229, 439–445 (2005)

    CAS  Google Scholar 

  54. K.V.R. Chary, C.S. Srikanth, Selective hydrogenation of nitrobenzene to aniline over Ru/SBA-15 catalysts. Catal. Lett. 128, 164–170 (2008)

    Google Scholar 

  55. V.Y. Doluda, J. Wärnå, A. Aho, A.V. Bykov, A.I. Sidorov, E.M. Sulman, L.M. Bronstein, T. Salmi, D.Y. Murzin, Kinetics of lactose hydrogenation over ruthenium nanoparticles in hypercrosslinked polystyrene. Ind. Eng. Chem. Res. 52, 14066–14080 (2013)

    CAS  Google Scholar 

  56. D.A. Abusuek, O.P. Tkachenko, A.V. Bykov, A.I. Sidorov, V.G. Matveeva, M.G. Sulman, L.Z. Nikoshvili, ZSM-5 as a support for Ru-containing catalysts of levulinic acid hydrogenation: influence of the reaction conditions and the zeolite acidity. Catal. Today. 423, 113885–113895 (2023)

    CAS  Google Scholar 

  57. S. Gundekari, K. Srinivasana, Hydrous ruthenium oxide: a new generation remarkable catalyst precursor for energy efficient and sustainable production of γ-valerolactone from levulinic acid in aqueous medium. Appl. Catal. A 569, 117–125 (2019)

    CAS  Google Scholar 

  58. Q. Yuan, D. Zhang, L. van Haandel, F. Ye, T. Xue, E.J.M. Hensen, Y. Guan, Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. J. Mol. Catal. A: Chem. 406, 58–64 (2015)

    CAS  Google Scholar 

  59. C. Michel, J. Zaffran, A.M. Ruppert, J. Matras-Michalska, M. Jedrzejczyk, J. Grams, P. Sautet, Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Chem. Commun. 50, 12450–12453 (2014)

    CAS  Google Scholar 

  60. M.G. Al-Shaal, W.R.H. Wright, R. Palkovits, Exploring the ruthenium catalysed synthesis of γ-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions. Green. Chem. 14, 1260–1263 (2012)

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Commission of Shanghai Municipality (13ZR1417900), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Contributions

JY and YG designed the study. YH performed the catalyst preparation and characterization. QY performed the hydrogenation tests. JY and YG wrote the paper with input from all authors. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jie Yang or Yejun Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1055.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hu, Y., Yang, Q. et al. Mesoporous SBA-15 supported Ru nanoparticles for effective hydrogenation of ethyl levulinate at room temperature. J Porous Mater 31, 727–736 (2024). https://doi.org/10.1007/s10934-023-01547-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01547-8

Keywords

Navigation