Skip to main content
Log in

Efficient Hydrolytic Hydrogenation of Cellulose on Mesoporous HZSM-5 Supported Ru Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrolytic hydrogenation of cellulose requires both functionalities of a metal and acid site. HZSM-5 has strong acid sites inside the micropores. However, those sites are not easily accessible to large molecules derived from cellulose. In this work, NaOH treatment of ZSM-5 was applied to introduce mesopores to the crystallite of ZSM-5. Characterizations showed that mesopores of 4–20 nm were successfully created on the surface of ZSM-5, and mesopore volume and total acid density (particularly Lewis acid density) increased as the severity of treatment increased. Loading of Ru on the mesoporous HZSM-5 resulted in a highly active and selective catalyst for conversion of cellulose to hexitols. The optimized hexitols yield of 39.4 % is 6 times higher than that of Ru supported on the parent HZSM-5. Model reaction studies (hydrolysis of cellobiose and hydrogenation of glucose) indicated that the enhanced acid density (particularly Lewis acid in mesopores) promotes the hydrolysis of oligosaccharides from primary depolymerization of cellulose. Furthermore, the uniform dispersion of smaller Ru nanoparticles due to the increased surface area caused by the mesopore enhanced the activity of the hydrogenation reaction. Consequently, a high yield of hexitols with reduced yield of small polyols was achieved on the optimized mesoporous Ru/HZSM-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J (2011) Chem Soc Rev 40:5588–5617

    Article  CAS  Google Scholar 

  2. gen Klaas MR, Schone H (2009) ChemSusChem 2:127–128

    Article  Google Scholar 

  3. Kobayashi H, Ohta H, Fukuoka A (2012) Catal Sci Technol 2:869–883

    Article  CAS  Google Scholar 

  4. Zhou LK, Wang AQ, Li CZ, Zheng MY, Zhang T (2012) ChemSusChem 5:932–938

    Article  CAS  Google Scholar 

  5. Yang P, Kobayashi H, Hara K, Fukuoka A (2012) ChemSusChem 5:920–926

    Article  CAS  Google Scholar 

  6. Zheng M-Y, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) ChemSusChem 3:63–66

    Article  CAS  Google Scholar 

  7. Deng WP, Wang YL, Zhang QH, Wang Y (2012) Catal Surv Asia 16:91–105

    Article  CAS  Google Scholar 

  8. Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A (2011) Chem Commun 47:2366–2368

    Article  CAS  Google Scholar 

  9. Xie XN, Han JY, Wang H, Zhu XL, Liu X, Niu YF, Song ZQ, Ge QF (2014) Catal Today 233:70–76

    Article  CAS  Google Scholar 

  10. Niu YF, Wang H, Zhu XL, Song ZQ, Xie XN, Liu X, Han JY, Ge QF (2014) Micropor Mesopor Mat 198:215–222

    Article  CAS  Google Scholar 

  11. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Ind Eng Chem Res 39:2883–2890

    Article  CAS  Google Scholar 

  12. Luo C, Wang SA, Liu HC (2007) Angew Chem Int Edit 46:7636–7639

    Article  CAS  Google Scholar 

  13. Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2011) Appl Catal B 105:171–181

    Article  CAS  Google Scholar 

  14. Zhou LP, Shi MT, Cai QY, Wu L, Hu XP, Yang XM, Chen C, Xu J (2013) Micropor Mesopor Mat 169:54–59

    Article  CAS  Google Scholar 

  15. Zhou LP, Liu Z, Shi MT, Du SS, Su YL, Yang XM, Xu J (2013) Carbohyd Polym 98:146–151

    Article  CAS  Google Scholar 

  16. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37:2530–2542

    Article  CAS  Google Scholar 

  17. Verboekend D, Perez-Ramirez J (2011) Catal Sci Technol 1:879–890

    Article  CAS  Google Scholar 

  18. Zhu X, Lobban LL, Mallinson RG, Resasco DE (2010) J Catal 271:88–98

    Article  CAS  Google Scholar 

  19. van laak ANC, Zhang L, Parvulescu AN, Bruijnincx PCA, Weckhuysen BM, de Jong KP, de Jongh PE (2011) Catal Today 168:48–56

    Article  Google Scholar 

  20. Milina M, Mitchell S, Trinidad ZD, Verboekend D, Pérez-Ramírez J (2012) Catal Sci Technol 2:759

    Article  CAS  Google Scholar 

  21. Mochizuki H, Yokoi T, Imai H, Namba S, Kondo JN, Tatsumi T (2012) Appl Catal A 449:188–197

    Article  CAS  Google Scholar 

  22. Bjørgen M, Joensen F, Spangsberg Holm M, Olsbye U, Lillerud K-P, Svelle S (2008) Appl Catal A 345:43–50

    Article  Google Scholar 

  23. Groen JC, Zhu W, Brouwer S, Huynink SJ, Kapteijn F, Moulijn JA, Perez-Ramirez J (2007) J Am Chem Soc 129:355–360

    Article  CAS  Google Scholar 

  24. Sun C, Du JM, Liu J, Yang YS, Ren N, Shen W, Xu HL, Tang Y (2010) Chem Commun 46:2671–2673

    Article  CAS  Google Scholar 

  25. Ohayon D, Le van Mao R, Ciaravino D, Hazel H, Cochennec A, Rolland N (2001) Appl Catal A 217:241–251

    Article  CAS  Google Scholar 

  26. Miyamoto T, Katada N, Kim JH, Niwa M (1998) J Phys Chem B 102:6738–6745

    Article  CAS  Google Scholar 

  27. Li Y, Liu S, Zhang Z, Xie S, Zhu X, Xu L (2008) Appl Catal A 338:100–113

    Article  CAS  Google Scholar 

  28. Parry EP (1963) J Catal 2:371–379

    Article  CAS  Google Scholar 

  29. Emeis CA (1993) J Catal 141:347–354

    Article  CAS  Google Scholar 

  30. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Green Chem 12:972–978

    Article  CAS  Google Scholar 

  31. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Chem Commun 47:5590–5592

    Article  CAS  Google Scholar 

  32. Weingarten R, Kim YT, Tompsett GA, Fernandez A, Han KS, Hagaman EW, Conner WC, Dumesic JA, Huber GW (2013) J Catal 304:123–134

    Article  CAS  Google Scholar 

  33. Xi JX, Zhang Y, Xia QN, Liu XH, Ren JW, Lu GZ, Wang YQ (2013) Appl Catal A 459:52–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 21276191, 21076152).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyu Han or Qingfeng Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Lv, J., Zhu, X. et al. Efficient Hydrolytic Hydrogenation of Cellulose on Mesoporous HZSM-5 Supported Ru Catalysts. Top Catal 58, 623–632 (2015). https://doi.org/10.1007/s11244-015-0409-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0409-6

Keywords

Navigation