Skip to main content
Log in

Role of washing process in the improvement of surface properties of porous geopolymers

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This study investigates the importance of washing process in the quantitative improvement of both porosity and specific surface area of geopolymers. To this end, geopolymers were synthesized using natural kaolinite clay via alkaline activation. The characterization of both unwashed (UW-GP) and washed (W-GP) geopolymers, involved several techniques: X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Thermal Gravimetric Analysis (TGA), specific surface area, pore distribution, pore volume and Scanning Electron Microscopy (SEM). After the washing process, both specific surface area (SBET) and pore volume (Vp) of geopolymers have increased considerably: SBET = 0.59 m2/g and Vp = 0.001 cm3/g (UW-GP) versus SBET = 78.80 m2/g and Vp = 0.104 cm3/g (W-GP)) respectively. Also, the adsorption test was conducted using methylene blue molecules dissolved in water, and the results for our geopolymers were obtained as follows: Qads (UW-GP) = 52.2 mg/g and Qads (W-GP) = 55.6 mg/g. These values demonstrate that the washing process has a minimal effect on the adsorption capacity of geopolymers. Hence, the washing process allows the increasing of the surface reactivity of geopolymers through the elimination of excess of unreacted alkaline solution which is responsible of the efflorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.R. Barbosa, E.L. Foletto, G.L. Dotto, S.L. Jahn, Ceram. Int. 44, 416–423 (2018)

    Article  CAS  Google Scholar 

  2. A. Singhal, B.P. Gangwar, J.M. Gayathry, Appl. Clay Sci. 150, 106–114 (2017)

    Article  CAS  Google Scholar 

  3. S.A. Rasaki, Z. Bingxue, R. Guarecuco, T. Thomas, Y. Minghui, J. Clean. Prod. 213, 42–58 (2019)

    Article  CAS  Google Scholar 

  4. A. Maleki, Z. Hajizadeh, A. Sharifi, Z. Emdadi, J. Clean. Prod. 215, 1233–1245 (2019)

    Article  CAS  Google Scholar 

  5. J. Rouyer, V. Benavent, F. Frizon, A. Poulesquen, Mater. Lett. 207, 121–124 (2017)

    Article  CAS  Google Scholar 

  6. N. Koshy, K. Dondrob, L. Hu, Q. Wen, J.N. Meegoda, Constr. Build. Mater. 206, 287–296 (2019)

    Article  CAS  Google Scholar 

  7. S. Tome, D.T. Hermann, V.O. Shikuku, S. Otieno, Ceram. Int. 47, 20965–20973 (2021)

    Article  CAS  Google Scholar 

  8. T.W. Cheng, M.L. Lee, M.S. Ko, T.H. Ueng, S.F. Yang, Appl. Clay Sci. 56, 90–96 (2012)

    Article  CAS  Google Scholar 

  9. P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, Cem. Concr. Res. 37, 1590–1597 (2007)

    Article  CAS  Google Scholar 

  10. J. Davidovits, Chemistry and Applications, Geopolymer Institute, 2nd edn. (Saint-Quentin, France, 2008)

    Google Scholar 

  11. R. Pouhet, M. Cyr, R. Bucher, Constr. Build. Mater. 201, 421–429 (2019)

    Article  CAS  Google Scholar 

  12. V. Benavent, F. Frizon, A. Poulesquen, J. Appl. Crystallogr. 49(6), 2116–2128 (2016)

    Article  CAS  Google Scholar 

  13. S. Petlitckaia, A. Poulesquen, Ceram. Int. 45, 1322–1330 (2019)

    Article  CAS  Google Scholar 

  14. L. Bouna, A. Ait El Fakir, A. Benlhachemi, K. Draoui, S. Villain, F. Guinneton, Mater. Today: Proc. 22, 22–27 (2020)

    CAS  Google Scholar 

  15. L. Bouna, A. Ait El Fakir, A. Benlhachemi, K. Draoui, M. Ezahri, B. Bakiz, S. Villain, F. Guinneton, N. Elalem, Appl. Clay Sci. 196, 105764 (2020)

    Article  CAS  Google Scholar 

  16. S. Brunauer, P.H. Emmet, E. Teller, Journal of American Chemical Society 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  17. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  18. P.T. Hang, G.W. Brindley, Clays Clay Miner. 18, 203–212 (1970)

    Article  Google Scholar 

  19. S. Selmani, A. Sdiri, S. Bouaziz, E. Joussein, S. Rossignol, Appl. Clay Sci. 146, 457–467 (2017)

    Article  CAS  Google Scholar 

  20. N.K. Lee, H.R. Khalid, H.K. Lee, Microporous Mesoporous Mater. 229, 22–30 (2016)

    Article  CAS  Google Scholar 

  21. Z. Zhang, H. Wang, X. Yao, Y. Zhu, Cem. Concr. Compos. 34, 709–715 (2012)

    Article  CAS  Google Scholar 

  22. P. Duxson, G.C. Lukey, J.S.J. van Deventer, J. Non Cryst. Solids 352, 5541–5555 (2006)

    Article  CAS  Google Scholar 

  23. E. Prud’Homme, P. Michaud, E. Joussein, J.M. Clacens, S. Arii-Clacens, I. Sobrados, C. Peyratout, A. Smith, J. Sanz, S. Rossignol, J. Non-Cryst, Solids. 357, 3637–3647 (2011)

    CAS  Google Scholar 

  24. K. Chen, W.T. Lin, W. Liu, Adv. Powder Technol. 32, 2929–2939 (2021)

    Article  CAS  Google Scholar 

  25. J.W. Kim, Y.D. Lee, H.G. Lee, ISIJ Int. 41, 116–123 (2001)

    Article  CAS  Google Scholar 

  26. A.A. Siyal, M.S. Shamsuddin, S.K. Khahro, A. Low, M. Ayoub, J. Environ. Chem. Eng.. Environ. Chem. Eng. 9, 104949 (2021)

    Article  CAS  Google Scholar 

  27. M. El Alouani, S. Alehyen, M. El Achouri, M. Taibi, J. Chem. 4212901 (2019)

  28. Q. Tang, Y. Ge, K. Wang, Y. He, X. Cui, Mater. Des. 88, 1244–1249 (2015)

    Article  CAS  Google Scholar 

  29. C. Sarkar, J.K. Basu, A.N. Samanta, J. Water Process Eng. 17, 237–244 (2017)

    Article  Google Scholar 

  30. F.J. López, S. Sugita, M. Tagaya, T. Kobayashi, J. Mater. Sci. Chem. Eng. 2, 16–27 (2014)

    Google Scholar 

  31. Y. Ettahiri, L. Bouna, J.V. Hanna, A. Benlhachemi, H.J. Pilsworth, A. Bouddouch, B. Bakiz, Mater. Chem. Phys. 296, 127281 (2023)

    Article  CAS  Google Scholar 

  32. H. Wang, H. Li, F. Yan, Colloids Surf. A 268, 1–6 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LB: wrote the manuscript text and prepared figures; YE: prepared figures and carried out the experiments; AE: reading the article and making corrections; AB: reading the article and making correction; MC: reading the article and making corrections.

Corresponding author

Correspondence to Lahcen Bouna.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouna, L., Ettahiri, Y., Elimbi, A. et al. Role of washing process in the improvement of surface properties of porous geopolymers. J Porous Mater 31, 569–576 (2024). https://doi.org/10.1007/s10934-023-01533-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01533-0

Keywords

Navigation