Skip to main content
Log in

Template-assisted mesoporous SnO2 based gas sensor for NO2 detection at low temperature

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The work outlines the synthesis of mesoporous tin oxide (m-SnO2) with enhanced Nitrogen Dioxide (NO2) gas sensing performance by making use of Cetyl Trimethyl Ammonium Bromide (CTAB) as the soft template. Powder X-ray Diffraction (PXRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy have been used to study the structural characteristics of mesoporous tin oxide. The average crystallite size calculated from the XRD technique was found to be 4.8 nm which is in corroboration with TEM analysis (4.9 nm). The FESEM indicated the porous morphology of the prepared sample which was also confirmed by N2 adsorption–desorption isotherms. The surface area and the average pore size of the sample were calculated from Brunauer–Emmett–Teller (BET) studies and Barrett–Joyner–Halenda (BJH) method and were found to be 154.4 m2 g−1 and 3.2 nm, respectively confirming the mesoporosity of the prepared tin oxide. The sensor was prepared by deposition of m-SnO2 thin film on Inter Digited Electrodes (IDE’s) of platinum decorated on a glass substrate. 10 parts per million concentration of oxidizing gas NO2 was tested on the fabricated sensor in the temperature range, 30 °C to 160 °C. Upon interacting with the gas, the sensor exhibited a response of 8635 with response time of 1s and recovery time of 165 s at 80 °C. The efficient sensor performance at 80 °C as observed in the present study is at much lower temperature in comparison with those reported earlier. The sensor has further shown good repeatability in terms of response and recovery at 80 °C. The sensor also exhibited good reproducibility and selectivity for NO2 gas. The enhanced sensor response of mesoporous tin oxide sensor is mainly because of large surface area (154.4 m2 g−1), mesoporous structure and small crystallite size (4.8 nm). The present study therefore establishes m-SnO2 as a potential candidate for efficient sensing of NO2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available by corresponding author on reasonable request.

Code availability

Data will be made available by corresponding author on reasonable request.

References

  1. Y.X. Zhen, B.Y. Song, W.X. Liu, J.X. Ye, X.F. Zhang, Z.P. Deng, L.H. Huo, S. Gao, Sens. Actuators B: Chem. (2022). https://doi.org/10.1016/j.snb.2022.13185210

    Article  Google Scholar 

  2. N. Devabharathi, A.M. Umarji, S. Dasgupta, A.C.S. Appl, Mater. Interfaces (2020). https://doi.org/10.1021/ac.sami.0c14704

    Article  Google Scholar 

  3. J.A. Bernstein, N. Alexis, C. Barnes, I.L. Berstein, J.A. Bernstein, A. Nel, D. Peden, D.D. Sanchez, S.M. Tarlo, P.B. Williams, J. Allergy Clin. Immunol. (2004). https://doi.org/10.1016/j.jaci.2004.08.030

    Article  PubMed  Google Scholar 

  4. K. Luo, R. Li, W. Li, Z. Wang, X. Ma, R. Zhang, X. Fang, Z. Wu, Y. Cao, Q. Xu, Sci. Rep. (2016). https://doi.org/10.1038/srep38328

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Li, M. Cheng, G. Liu, L. Zhao, B. Zhao, H. Lu, H. Wang, J. Zhao, F. Liu, X. Yan, T. Zhang, G. Lu, J. Colloid Inerface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.04.033

    Article  Google Scholar 

  6. A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Sens. Actuators B: Chem. (2003). https://doi.org/10.1016/S0925-4005(03)00183-7

    Article  Google Scholar 

  7. S. Kumar, V. Pavelyev, P. Mishra, N. Tripathi, P. Sharma, F. Calle, Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2019.104865

    Article  Google Scholar 

  8. R.J. Vander, H.J. Eskes, K.F. Boersma, T.P.C. Vannoije, M.V. Roozendael, I.D. Smedt, D.H.M.U. Peters, E.W. Meijer, J. Geophys. Res. Atmos. (2008). https://doi.org/10.1029/2007JD009021

    Article  Google Scholar 

  9. A.V. Agrawal, N. Kumar, M. Kumar, Nano Micro Lett. (2021). https://doi.org/10.1007/s40820-020-00558-3

    Article  Google Scholar 

  10. R. Vasumathi, K.C. Lalithambika, D. Balamurugan, A. Thayumanavan, P. Neelamegam, S. Sriram, J. Comput. Electron. (2018). https://doi.org/10.1007/s10825-017-1091-7

    Article  Google Scholar 

  11. A.K. Vishwakarma, L. Yadav, Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-10211-6

    Article  Google Scholar 

  12. T. Lin, X. Lv, Z. Hu, A. Xu, C. Feng, Sensors (2019). https://doi.org/10.3390/s19020233

    Article  PubMed  PubMed Central  Google Scholar 

  13. B. Saruhan, R.L. Fomekong, S. Nahirniak, Front. Sens. (2021). https://doi.org/10.3389/fsens.2021.657931

    Article  Google Scholar 

  14. N.D. Hoa, N.V. Duy, S.A. El-Safty, N.V. Hieu, J. Nanomater. (2015). https://doi.org/10.1155/2015/972025

    Article  Google Scholar 

  15. N.D. Hoa, N.V. Duy, N.V. Hieu, Mater. Res. Bull. (2013). https://doi.org/10.1016/j.materresbull.2012.10.047

    Article  Google Scholar 

  16. H. Wang, Y. Qu, H. Chen, Z. Lin, K. Dai, Sens. Actuators B. Chem. (2014). https://doi.org/10.1016/j.snb.2014.04.049

    Article  PubMed  PubMed Central  Google Scholar 

  17. X. Wang, S. Qiu, J. Liu, C. He, G. Lu, Eur. J. Inorg. Chem. (2014). https://doi.org/10.1002/ejic.201301212

    Article  Google Scholar 

  18. M. Dutt, A. Kaushik, M. Tomar, V. Gupta, V. Singh, J. Porous Mater. (2020). https://doi.org/10.1007/s10934-019-00811-0

    Article  Google Scholar 

  19. Y. Lu, Q. Wang, G. Zhu, Q. Ran, F. Li, M. Guo, G. Wang, H. Zhao, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.253

    Article  Google Scholar 

  20. A. Dey, Mater. Sci. Eng. B (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  Google Scholar 

  21. G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Crit. Rev. Solid State Mater. Sci. (2010). https://doi.org/10.1080/10408430490888977

    Article  Google Scholar 

  22. G. Korotcenkov, Mater. Sci. Eng. B (2007). https://doi.org/10.1016/j.mseb.2007.01.044

    Article  Google Scholar 

  23. J. Xu, J. Han, Y. Zhang, Y. Sun, Sens. Actuators B: Chem. (2008). https://doi.org/10.1016/j.snb.2008.01.062

    Article  PubMed  Google Scholar 

  24. Y. Xu, C. Lou, L. Zheng, W. Zheng, X. Liu, M. Kumar, J. Zhang, Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2019.127616

    Article  PubMed  Google Scholar 

  25. J. Wang, Z. Li, S. Zhang, S. Yan, B. Cao, Z. Wang, Y. Fu, Sens. Actuators B: Chem. (2018). https://doi.org/10.1016/j.snb.2017.08.149

    Article  PubMed  Google Scholar 

  26. X. Xiao, L. Liu, J. Ma, Y. Ren, X. Cheng, Y. Zhu, D. Zhao, A.A. Elzatahry, A. Alghamdi, Y. Deng, A.C.S. Appl, Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b18830

    Article  Google Scholar 

  27. D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu, V. Tiron, A. Manole, C. Adomnitei, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.01.137

    Article  Google Scholar 

  28. S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Sens. Actuators B: Chem (2013). https://doi.org/10.1016/j.snb.2012.09.034

    Article  Google Scholar 

  29. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, Thin Solid Films (2002). https://doi.org/10.1016/S0040-6090(02)00579-5

    Article  Google Scholar 

  30. J.M. Xu, J.P. Cheng, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.06.086

    Article  Google Scholar 

  31. K. Schneider, M. Lubecka, A. Czapla, Sens. Actuators B: Chem. (2016). https://doi.org/10.1016/j.snb.2016.04.059

    Article  Google Scholar 

  32. S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, C.C. Liu, Sens. Actuators B: Chem. (2012). https://doi.org/10.1016/j.snb.2012.08.015

    Article  Google Scholar 

  33. I. Boehme, U. Weimar, N. Barsan, Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2020.129004

    Article  Google Scholar 

  34. X. Li, K. Peng, Y. Dou, J. Chen, Y. Zhang, G. An, Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2434-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. S.M. Ingole, S.T. Navale, Y.H. Navale, D.K. Bandgar, F.J. Stadler, R.S. Mane, N.S. Ramgir, S.K. Gupta, D.K. Aswal, V.B. Patil, J. Colloid Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2017.01.025

    Article  PubMed  Google Scholar 

  36. R. Zhang, X. Liu, T. Zhou, L. Wang, T. Zhang, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  37. H.J. Kim, S.B. Jo, J.H. Ahn, B.W. Hwang, H.J. Chae, S.Y. Kim, J.S. Huh, D. Ragupathy, S.C. Lee, J.C. Kim, Adsorption (2019). https://doi.org/10.1007/s10450-019-00105-6

    Article  Google Scholar 

  38. M.G. Masteghin, R.A. Silva, D.C. Cox, D.R.M. Godoi, S.R.P. Silva, M.O. Orlandi, Phys. Chem. Chem. Phys. (2021). https://doi.org/10.1039/D1CP00662B

    Article  PubMed  Google Scholar 

  39. M. Rieu, M. Camara, G. Tournier, J.P. Viricelle, C. Pijolat, N.F. de Rooij, D. Briand, Sens (Chem, Actuators B, 2016). https://doi.org/10.1016/j.snb.2016.06.042

    Book  Google Scholar 

  40. J. Wang, H. Shen, Y. Xia, S. Komarneni, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.11.187

    Article  Google Scholar 

  41. M.A. Andio, P.N. Browning, P.A. Morris, S.A. Akbar, Sens. Actuators: B. Chem. (2012). https://doi.org/10.1016/j.snb.2011.12.045

    Article  Google Scholar 

  42. Y. Liu, J. Goebl, Y. Yin, Chem. Soc. Rev. (2013). https://doi.org/10.1039/C2CS35369E

    Article  PubMed  PubMed Central  Google Scholar 

  43. M.Y. Ahmad, M.Z.A. Bakar, J. Jushila, Am. J. Chem. (2016). https://doi.org/10.5923/j.chemistry.20160605.04

    Article  Google Scholar 

  44. J. Zhao, W. Wang, Y. Liu, J. Ma, X. Li, Y. Du, G. Lu, Sens. Actuators B: Chem. (2011). https://doi.org/10.1016/j.snb.2011.08.035

    Article  Google Scholar 

  45. N.D. Petkovich, A. Stein, Chem. Soc. Rev. (2013). https://doi.org/10.1039/C2CS35308C

    Article  PubMed  Google Scholar 

  46. R. Daiyan, X. Lu, W.H. Saputera, Y.H. Ng, R. Amal, ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b02913

    Article  Google Scholar 

  47. Y. Wang, C. Liu, L. Wang, J. Liu, B. Zhang, Y. Gao, P. Sun, Y. Sun, T. Zhang, G. Lu, Sens. Actuators B: Chem. (2017). https://doi.org/10.1016/j.snb.2016.07.160

    Article  PubMed  Google Scholar 

  48. Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. (2005). https://doi.org/10.1002/anie.200501561

    Article  Google Scholar 

  49. W. Li, Z. Wu, J. Wang, A.A. Elzatahr, D. Zhao, Chem. Mater. (2014). https://doi.org/10.1021/cm4014859

    Article  PubMed  PubMed Central  Google Scholar 

  50. A.H. Lu, F. Schuth, C. R. Chim. (2005). https://doi.org/10.1016/j.crci.2004.10.020

    Article  Google Scholar 

  51. A.H. Lu, F. Schuth, Adv. Mater. (2006). https://doi.org/10.1002/adma.200600148

    Article  Google Scholar 

  52. Y. Wang, C. Ma, X. Sun, H. Li, Microporous Mesoporous Mater. (2001). https://doi.org/10.1016/S1387-1811(01)00415-2

    Article  Google Scholar 

  53. D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, ACS Nano (2013). https://doi.org/10.1021/nn400026u

    Article  PubMed  Google Scholar 

  54. Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao, Y. Wang, Sens. Actuators B: Chem. (2017). https://doi.org/10.1016/j.snb.2016.07.051

    Article  Google Scholar 

  55. A. Khoudro, Chem. Mater. Res. (2020). https://doi.org/10.7176/CMR/10-5-02

    Article  Google Scholar 

  56. Z.M. Jarzebski, J.P. Marton, J. Electrochem. Soc. (1976). https://doi.org/10.1149/1.2133010

    Article  Google Scholar 

  57. T.T. Li, L. Xia, H. Yu, X.X. Huang, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-04892-0

    Article  Google Scholar 

  58. P. Sudarsanam, P.R. Selvakannan, S.K. Soni, S.K. Bhargava, B.M. Reddy, RSC Adv. (2014). https://doi.org/10.1039/C4RA07450E

    Article  Google Scholar 

  59. P. Manjunathan, V.S. Marakatti, P. Chandra, A.B. Kulal, S.B. Umbarkar, R. Ravishankar, G.V. Shanbhag, Catal. Today (2018). https://doi.org/10.1016/j.cattod.2017.10.009

    Article  Google Scholar 

  60. D. Bahati, M. Prasanna, P.V.K. Rao, Open Sci. J. (2020). https://doi.org/10.23954/osj.v5i3.2444

    Article  Google Scholar 

  61. S. Yang, L. Gao, J. Am. Ceram. Soc. (2006). https://doi.org/10.1111/j.1551-2916.2006.00947.x

    Article  Google Scholar 

  62. Y.D. Wang, C.L. Ma, X.H. Wu, X.D. Sun, H.D. Li, Sens. Actuators B: Chem. (2002). https://doi.org/10.1016/S0925-4005(02)00131-4

    Article  Google Scholar 

  63. C. Zhang, J. Wang, R. Hu, Q. Qiao, X. Li, Sens. Actuators B: Chem. (2016). https://doi.org/10.1016/j.snb.2015.08.016

    Article  PubMed  Google Scholar 

  64. G. Xi, Y. He, Q. Zhang, H. Xiao, X. Wang, C. Wang, J. Phys. Chem. C (2008). https://doi.org/10.1021/jp802180z

    Article  Google Scholar 

  65. J. Huang, L. Wang, C. Gu, Z. Wang, Y. Sun, J.J. Shim, Sens. Actuators: B. Chem. (2015). https://doi.org/10.1016/j.snb.2014.10.128

    Article  PubMed  Google Scholar 

  66. B. Bhangre, N.S. Ramgir, S. Jagtap, A.K. Debnath, K.P. Muthe, C. Terashima, D.K. Aswal, S.W. Gosavi, A. Fujishima, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.05.176

    Article  Google Scholar 

  67. Y. Tao, Q. Gao, J. Di, X. Wu, J. Nanosci. Nanotechnol. (2013). https://doi.org/10.1166/jnn.2013.7559

    Article  PubMed  Google Scholar 

  68. D. Li, B. Zhang, J. Xu, Y. Han, H. Jin, D. Jin, X. Peng, H. Ge, X. Wang, Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/18/185702

    Article  PubMed  PubMed Central  Google Scholar 

  69. M. Dutt, A. Ratan, M. Tomar, V. Gupta, V. Singh, J. Phys. Chem. Solids (2020). https://doi.org/10.1016/j.jpcs.2020.109536

    Article  Google Scholar 

  70. S. Seal, S. Shukla, JOM (2002). https://doi.org/10.1007/BF02709091

    Article  Google Scholar 

  71. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, J. Electrochem. Soc. Jap. (1990). https://doi.org/10.5796/kogyobutsurikagaku.58.1143

    Article  Google Scholar 

  72. H. Ogawa, M. Nishikawa, A. Abe, J. Appl. Phys. (1982). https://doi.org/10.1063/1.331230

    Article  Google Scholar 

  73. L. Zhou, Z. Hu, H.Y. Li, J. Liu, Y. Zheng, J. Wang, Y. Huang, L. Miao, G. Zhang, Y. Huang, J. Jiang, S. Jiang, H. Liu, A.C.S. Appl, Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c04651

    Article  Google Scholar 

  74. D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, J. Anal. Appl. Pyrolysis (2017). https://doi.org/10.1016/j.jaap.2017.09.004

    Article  Google Scholar 

  75. H. Zhang, M. Zhuo, Y. Luo, Y. Chen, J. Semicond. (2017). https://doi.org/10.1088/1674-4926/38/2/023003

    Article  Google Scholar 

  76. W. Du, N. Wu, Z. Wang, J. Liu, D. Xu, W. Liu, Sens. Actuators B: Chem. (2018). https://doi.org/10.1016/j.snb.2017.10.130

    Article  PubMed  Google Scholar 

  77. M.K. Sohal, A. Mahajan, S. Gasso, R.K. Bedi, R.C. Singh, A.K. Debnath, D.K. Aswal, Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2020.129169

    Article  Google Scholar 

  78. A. Sharma, M. Tomar, V. Gupta, Sens. Actuators B: Chem. (2011). https://doi.org/10.1016/j.snb.2011.02.033

    Article  Google Scholar 

  79. A. Sharma, M. Tomar, V. Gupta, J. Mater. Chem. (2012). https://doi.org/10.1039/C2JM35172B

    Article  Google Scholar 

  80. W. Li, K. Kan, L. He, L. Ma, X. Zhang, J. Si, M. Ikram, M. Ullah, M. Khan, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145657

    Article  PubMed  PubMed Central  Google Scholar 

  81. H. Liu, J. Wan, Q. Fu, M. Li, W. Luo, Z. Zheng, H. Cao, Y. Hu, D. Zhou, Sens. Actuators B: Chem. (2013). https://doi.org/10.1016/j.snb.2012.11.051

    Article  PubMed  Google Scholar 

  82. X. Zhao, W. Shi, H. Mu, H. Xie, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.11.015

    Article  PubMed  PubMed Central  Google Scholar 

  83. C. Zhang, A. Boudiba, P.D. Marco, R. Snyders, M.G. Olivier, M. Debliquy, Sens. Actuators B: Chem. (2013). https://doi.org/10.1016/j.snb.2013.01.082

    Article  PubMed  Google Scholar 

  84. C. Xu, J. Tamaki, M. Norio, Y. Noboru, Chem. Lett. (1990). https://doi.org/10.1246/cl.1990.441

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and facilities of Guru Gobind Singh Indraprastha University, New Delhi. The authors acknowledge USIC, University of Delhi for FTIR and FESEM characterization, AIRF, JNU for XRD characterization, MARC Bengaluru for N2 sorption studies and XPS studies, SAIF AIIMS for TEM characterization, Miranda House, University of Delhi for providing gas sensing facilities. Vaishali Singh is thankful to GGSIPU for providing financial assistance under the FRGS grant (File No-GGSIPU/DRC/FRGS/2022/1223/12). Alka Singh acknowledges the fellowship support in the form of Indraprastha research fellowship (IPRF) from Guru Gobind Singh Indraprastha University.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, Methodology, Formal analysis, Investigation, Data curation, Writing-original draft, Writing-review & editing, Visualization. MV: Writing-review & editing. SM: Methodology, Formal analysis, Writing-review & editing. MT: Resources, Writing-review & editing. AC: Resources, Writing-review & editing. VS: Conceptualization, Methodology, Formal analysis, Writing-original draft, Writing-review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Vaishali Singh.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Vats, M., Mohapatra, S. et al. Template-assisted mesoporous SnO2 based gas sensor for NO2 detection at low temperature. J Porous Mater 31, 545–555 (2024). https://doi.org/10.1007/s10934-023-01528-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01528-x

Keywords

Navigation