Skip to main content
Log in

Efficient electrocatalytic reduction of CO2 to CO via mechanochemical synthesized copper-based composite metallic oxide catalyst

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Electrocatalysis serves as a highly effective approach to both mitigate greenhouse gas emissions and produce high-value chemicals. Copper-based catalysts have garnered considerable attention due to their immense potential in this domain. Improving the selectivity and activity through optimizing preparation strategies is of paramount importance. In this study, the mechanochemical method was first used for preparing copper-based composite metallic oxide electrocatalysts. Spherical CuO, Sn-CuO, and Sn-In-CuO catalysts were prepared, and their electrochemical CO2 performance was evaluated. Among them, the Sn-In-CuO catalyst demonstrated the best performance in reducing CO2 to CO products. Within the potential range of −0.6 V to −1.1 V vs. RHE, the Faradaic efficiency of the CO product was consistently above 93.56%, with a maximum Faradaic efficiency of 96.11% achieved at −0.9 V vs. RHE. Sn-In-CuO also exhibits good stability with high Faradaic efficiency of CO above 87.97% for a duration of 6 h under the potential of −0.6 V vs. RHE in a 0.1 M KHCO3 electrolyte. The excellent performance is speculated to be attributed to the generation of a large number of defects and the introduction of metal doping, which increases the number of active sites through the mechanochemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Wang, X. Hu, X. Hu et al., Typical transition metal single-atom catalysts with a metal-pyridine N structure for efficient CO2 electroreduction. Appl. Catal. B 296, 120331 (2021)

    CAS  Google Scholar 

  2. T.N. Nguyen, M. Salehi, Q.V. Le et al., Fundamentals of Electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 10(17), 10068–10095 (2020)

    Google Scholar 

  3. T. Tsujiguchi, Y. Kawabe, S. Jeong et al., Acceleration of Electrochemical CO2 reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catal. 11(6), 3310–3318 (2021)

    CAS  Google Scholar 

  4. X. Xiong, C. Mao, Z. Yang et al., Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 10(46), 2002928 (2020)

    CAS  Google Scholar 

  5. T. Ma, Q. Fan, H. Tao et al., Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges. Nanotechnology. 28(47), 472001 (2017)

    PubMed  Google Scholar 

  6. W. Zhu, R. Michalsky, O. Metin et al., Monodisperse au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 135(45), 16833–16836 (2013)

    CAS  PubMed  Google Scholar 

  7. S.Q. Liu, S.W. Wu, M.R. Gao et al., Hollow porous ag spherical catalysts for highly efficient and selective electrocatalytic reduction of CO2 to CO, ACS Sustain. Chem. Eng. 7(17), 14443–14450 (2019)

    CAS  Google Scholar 

  8. D. Gao, H. Zhou, J. Wang et al., Size-dependent electrocatalytic reduction of CO2 over pd nanoparticles. J. Am. Chem. Soc. 137(13), 4288–4291 (2015)

    CAS  PubMed  Google Scholar 

  9. J. He, N.J.J. Johnson, A. Huang et al., Electrocatalytic alloys for CO2 reduction. ChemSusChem 11(1), 48–57 (2018)

    CAS  PubMed  Google Scholar 

  10. J. Liu, L. Peng, Y. Zhou et al., Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction, ACS sustain. Chem. Eng. 7(18), 15739–15746 (2019)

    CAS  Google Scholar 

  11. W. Xiong, J. Yang, L. Shuai et al., CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction. ChemElectroChem 6(24), 5951–5957 (2019)

    CAS  Google Scholar 

  12. S. Yang, H. An, D. Anastasiadou et al., Waste-derived Copper-lead electrocatalysts for CO2 reduction. ChemCatChem 14(18), e202200754 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Kim, J. Resasco, Y. Yu et al., Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5(1), 4948 (2014)

    CAS  PubMed  Google Scholar 

  14. H. Yan, Y. Lin, H. Wu et al., Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8(1), 1070 (2017)

    PubMed  PubMed Central  Google Scholar 

  15. L. Bai, C.S. Hsu, D.T. Alexander, L et al., A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141(36), 14190–14199 (2019)

    CAS  PubMed  Google Scholar 

  16. Y. Yang, Y. Qian, H. Li et al., O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6(23), eaba6586 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Han, X. Ling, D. Yu et al., Atomically dispersed binary co-ni sites in nitrogen‐doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), 1905622 (2019)

    CAS  Google Scholar 

  18. I.N. Egorov, S. Santra, D.S. Kopchuk et al., Ball milling: an efficient and green approach for asymmetric organic syntheses. Green. Chem. 22(2), 302–315 (2020)

    CAS  Google Scholar 

  19. X. Wang, S. Ding, T. Yue et al., Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction. Nano. Energy. 82, 105689 (2021)

    CAS  Google Scholar 

  20. K. Lv, C. Teng, M. Shi et al., Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv. Funct. Mater. 28(49), 1802339 (2018)

    Google Scholar 

  21. S. Yang, Y. Yu, M. Dou et al., Two-dimensional conjugated aromatic networks as high‐site‐density and single‐atom electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(41), 14724–14730 (2019)

    CAS  Google Scholar 

  22. X. Zhang, Y. Zhong, H. Chen et al., Synthesis of Nitrogen-doped Carbon supported Cerium single atom Catalyst by Ball Milling for Selective Oxidation of Ethylbenzene. Chem. Res. Chin. Univ. 38(5), 1258–1262 (2022)

    CAS  Google Scholar 

  23. T. Gan, Y. Liu, Q. He et al., Facile synthesis of kilogram-scale co-alloyed pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 8(23), 8692–8699 (2020)

    CAS  Google Scholar 

  24. Z. Chen, R. Zheng, W. Wei et al., Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. J. Energy Chem. 68, 275–283 (2022)

    CAS  Google Scholar 

  25. X. Fan, P. Du, X. Ma et al., Mechanochemical synthesis of Pt/Nb2CTx MXene composites for enhanced electrocatalytic hydrogen evolution. Materials. 14(9), 2426 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Hu, L. Gui, W. Zhou et al., Partially reduced Sn/SnO2 porous hollow fiber: a highly selective, efficient and robust electrocatalyst towards carbon dioxide reduction. Electrochim. Acta. 285, 70–77 (2018)

    CAS  Google Scholar 

  27. G.O. Larrazábal, A.J. Martín, S. Mitchell et al., Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J. Catal. 343, 266–277 (2016)

    Google Scholar 

  28. S. Yang, Z. Liu, H. An et al., Near-Unity Electrochemical CO2 to CO Conversion over Sn-Doped Copper Oxide nanoparticles. ACS Catal. 12(24), 15146–15156 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Singh, J. Singh, S.S. Jolly et al., Fructose modified synthesis of ZnO nanoparticles and its application for removal of industrial pollutants from water. J. Mater. Sci. Mater. Electron. 29(9), 7364–7371 (2018)

    CAS  Google Scholar 

  30. V. Goyal, A. Singh, J. Singh et al., Biogenically structural and morphological engineering of Trigonella foenum-graecum mediated SnO2 nanoparticles with enhanced photocatalytic and antimicrobial activities. Mater. Chem. Phys. 282, 125946 (2022)

    CAS  Google Scholar 

  31. D.P. Shaik, R. Pitcheri, Y. Qiu et al., Hydrothermally synthesized porous Mn3O4 nanoparticles with enhanced electrochemical performance for supercapacitors. Ceram. Int. 45(2), 2226–2233 (2019)

    CAS  Google Scholar 

  32. M. Jo, A. Tanaka, Auger electron peaks of Cu in XPS. Appl. Surf. Sci. 100, 11–14 (1996)

    Google Scholar 

  33. S. Chu, X. Yan, C. Choi et al., Stabilization of Cu+ by tuning a CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene. Green. Chem. 22(19), 6540–6546 (2020)

    CAS  Google Scholar 

  34. J. Li, H.C. Zeng, Hollowing Sn-Doped TiO2 nanospheres via Ostwald Ripening. J. Am. Chem. Soc. 129(51), 15839–15847 (2007)

    CAS  PubMed  Google Scholar 

  35. Z. Gu, N. Yang, P. Han et al., Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 3, 1800449 (2018)

    Google Scholar 

  36. C. Dong, Z. Qu, X. Jiang et al., Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation. J. Hazard. Mater. 391, 122181 (2020)

    CAS  PubMed  Google Scholar 

  37. H. Jiao, G. Sun, Y. Wang et al., Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. Chin. Chem. Lett. 33(8), 4008–4012 (2022)

    CAS  Google Scholar 

  38. Z. Geng, X. Kong, W. Chen et al., Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem. Int. Ed. Engl. 57(21), 6054–6059 (2018)

    CAS  PubMed  Google Scholar 

  39. M. Xu, P. Da, H. Wu et al., Controlled Sn-Doping in TiO2 nanowire photoanodes with enhanced Photoelectrochemical Conversion. Nano Lett. 12(3), 1503–1508 (2012)

    CAS  PubMed  Google Scholar 

  40. T. Gunji, H. Ochiai, Y. Isawa et al., Electrocatalytic conversion of carbon dioxide to formic acid over nanosized Cu6Sn5 intermetallic compounds with a SnO2 shell layer. Catal. Sci. Technol. 9(23), 6577–6584 (2019)

    CAS  Google Scholar 

  41. Y. Ye, Y. Liu, Z. Li et al., Highly selective and active Cu-In2O3/C nanocomposite for electrocatalytic reduction of CO2 to CO. J. Colloid Interface Sci. 586, 528–537 (2021)

    CAS  PubMed  Google Scholar 

  42. P. Vomáčka, V. Štengl, J. Henych et al., Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of rhodamine B. J. Colloid Interface Sci. 481, 28–38 (2016)

    PubMed  Google Scholar 

  43. J. Wang, F. Zhang, Y. Wang et al., A size-controllable preparation method for indium tin oxide particles using a membrane dispersion micromixer. Chem. Eng. J. 293, 1–8 (2016)

    CAS  Google Scholar 

  44. S. Zeng, W. Zhang, S. Guo et al., Inverse rod-like CeO2 supported on CuO prepared by hydrothermal method for preferential oxidation of Carbon Monoxide. Catal. Commun. 23, 62–66 (2012)

    CAS  Google Scholar 

  45. J. Shen, X. Feng, R. Liu et al., Tuning SnO2 surface with CuO for soot particulate combustion: the effect of monolayer dispersion capacity on reaction performance. Chin. J. Catal. 40(6), 905–916 (2019)

    CAS  Google Scholar 

  46. S. Zeng, W. Zhang, M. Śliwa et al., Comparative study of CeO2/CuO and CuO/CeO2 catalysts on catalytic performance for preferential CO oxidation. Int. J. Hydrog Energy. 38(9), 3597–3605 (2013)

    CAS  Google Scholar 

  47. H. Xie, Q. Du, H. Li et al., Catalytic combustion of volatile aromatic compounds over CuO-CeO2 catalyst. Korean J. Chem. Eng. 34, 1944–1951 (2017)

    CAS  Google Scholar 

  48. S.T. Hossain, E.T. Zell, S. Balaz et al., A γ to α type transition of CuO species over CeO2-SiO2 composites supported CuO catalysts. Appl. Surf. Sci. 491, 374–382 (2019)

    CAS  Google Scholar 

  49. S. Chen, X. Li, C. Kao et al., Unveiling the proton-feeding effect in Sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 61(32), e202206233 (2022)

    CAS  PubMed  Google Scholar 

  50. X. Wang, S. Feng, W. Lu et al., A New Strategy for accelerating dynamic Proton transfer of Electrochemical CO2 reduction at High Current densities. Adv. Funct. Mater. 31(50), 2104243 (2021)

    CAS  Google Scholar 

  51. W. Zheng, Y. Wang, L. Shuai et al., Highly boosted reaction kinetics in Carbon Dioxide Electroreduction by Surface-Introduced Electronegative Dopants. Adv. Funct. Mater. 31(15), 2008146 (2021)

    CAS  Google Scholar 

  52. S. Jia, Q. Zhu, H. Wu et al., Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper–antimony bimetallic alloy catalyst. Chin. J. Catal. 41(7), 1091–1098 (2020)

    CAS  Google Scholar 

  53. H. Luo, B. Li, J. Ma et al., Surface modification of Nano-Cu2O for Controlling CO2 Electrochemical reduction to Ethylene and Syngas. Angew. Chem. Int. Ed. Engl. 61(11), e202116736 (2022)

    CAS  PubMed  Google Scholar 

  54. L. Peng, Y. Wang, I. Masood et al., Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction. Appl. Catal. B 264, 118447 (2020)

    Google Scholar 

  55. S. Back, M.S. Yeom, Y. Jung, Active sites of au and ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 5(9), 5089–5096 (2015)

    CAS  Google Scholar 

  56. Q. Lu, J. Rosen, Y. Zhou et al., A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5(1), 3242 (2014)

    PubMed  Google Scholar 

  57. G.F. Han, F. Li, A.I. Rykov et al., Abrading bulk metal into single atoms. Nat. Nanotechnol. 17(4), 403–407 (2022)

    CAS  PubMed  Google Scholar 

  58. M. Xiao, Y. Chen, J. Zhu et al., Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J. Am. Chem. Soc. 141(44), 17763–17770 (2019)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese National Natural Science Foundation (U20A20125, study on key materials and mechanisms for electrocatalytic transportation and application of by-product CO2 from Ningxia coal mine), innovative team for transforming waste cooking oil into clean energy and high value-added chemicals, China, and Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project.

Author information

Authors and Affiliations

Authors

Contributions

HL, TS and ZY conceived and designed the experiment. TS conducted experiments. HL and TL provided experimental conditions. XZ, YW and LC helped some results analysis and discussion. TS and ZY collaborated on the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhen Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 413.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Song, T., Wang, Y. et al. Efficient electrocatalytic reduction of CO2 to CO via mechanochemical synthesized copper-based composite metallic oxide catalyst. J Porous Mater 31, 437–448 (2024). https://doi.org/10.1007/s10934-023-01524-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01524-1

Keywords

Navigation