Skip to main content
Log in

Electrochemical CO2 reduction to C2+ products over Cu/Zn intermetallic catalysts synthesized by electrodeposition

  • Research Article
  • Special Column: Toward Carbon Neutrality by Artificial Photosynthesis
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 reduction (ECR) offers an attractive approach to realizing carbon neutrality and producing valuable chemicals and fuels using CO2 as the feedstock. However, the lack of cost-effective electrocatalysts with better performances has seriously hindered its application. Herein, a one-step co-electrodeposition method was used to introduce Zn, a metal with weak *CO binding energy, into Cu to form Cu/Zn intermetallic catalysts (Cu/Zn IMCs). It was shown that, using an H-cell, the high Faradaic efficiency of C2+ hydrocarbons/alcohols \(({\rm{F}}{{\rm{E}}_{{{\rm{C}}_{2 + }}}})\) could be achieved in ECR by adjusting the surface metal components and the applied potential. In suitable conditions, FEC2+ and current density could be as high as 75% and 40 mA/cm2, respectively. Compared with the Cu catalyst, the Cu/Zn IMCs have a lower interfacial charge transfer resistance and a larger electrochemically active surface area (ECSA), which accelerate the reaction. Moreover, the *CO formed on Zn sites can move to Cu sites due to its weak binding with *CO, and thus enhance the C–C coupling on the Cu surface to form C2+ products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He M, Sun Y, Han B. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angewandte Chemie International Edition, 2022, 61(15): e202112835

    Article  Google Scholar 

  2. Payra S, Shenoy S, Chakraborty C, et al. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Applied Materials & Interfaces, 2020, 12(17): 19402–19414

    Article  Google Scholar 

  3. Pinthong P, Klongklaew P, Praserthdam P, et al. Effect of the nanostructured Zn/Cu electrocatalyst morphology on the electrochemical reduction of CO2 to value-added chemicals. Nanomaterials, 2021, 11(7): 1671–1682

    Article  Google Scholar 

  4. Pori M, Arčon I, Lašič Jurković D, et al. Synthesis of a Cu/ZnO nanocomposite by electroless plating for the catalytic conversion of CO2 to methanol. Catalysis Letters, 2019, 149(5): 1427–1439

    Article  Google Scholar 

  5. Wang X, Hu Q, Li G, et al. Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts. Electrochemical Energy Reviews, 2022, 5(S2): 28–71

    Article  Google Scholar 

  6. Keerthiga G, Chetty R. Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes. Journal of the Electrochemical Society, 2017, 164(4): H164–H169

    Article  Google Scholar 

  7. Sui P F, Gao M R, Liu S, et al. Carbon dioxide valorization via formate electrosynthesis in a wide potential window. Advanced Functional Materials, 2022, 32(32): 2203794–2203802

    Article  Google Scholar 

  8. Wang L, Peng H, Lamaison S, et al. Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. Chem Catalysis, 2021, 1(3): 663–680

    Article  Google Scholar 

  9. Yan Y, Ke L, Ding Y, et al. Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. Materials Chemistry Frontiers, 2021, 5(6): 2668–2683

    Article  Google Scholar 

  10. Wang W, Han J, Sun Y, et al. Metal-free SeBN ternary-doped porous carbon as efficient electrocatalysts for CO2 reduction reaction. ACS Applied Energy Materials, 2022, 5(9): 10518–10525

    Article  Google Scholar 

  11. Tan X, Yu C, Ren Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy & Environmental Science, 2021, 14(2): 765–780

    Article  Google Scholar 

  12. Han J, Ma J, Zhou J, et al. Insight into the effect of surface coverage of carbon support on selective CO2 electroreduction to C2H4 over copper-based catalyst. Applied Surface Science, 2023, 609(30): 155394–155401

    Article  Google Scholar 

  13. Wang J, Wang G, Zhang J, et al. Inversely tuning the CO2 electroreduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angewandte Chemie International Edition, 2021, 60(14): 7602–7606

    Article  MathSciNet  Google Scholar 

  14. Kim D, Resasco J, Yu Y, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Communications, 2014, 5(1): 4948

    Article  Google Scholar 

  15. Zhu C, Kais S, Zeng X C, et al. Interfaces select specific stereochemical conformations: The isomerization of glyoxal at the liquid water interface. Journal of the American Chemical Society, 2017, 139(1): 27–30

    Article  Google Scholar 

  16. Zhang Y, Wang X, Zheng S, et al. Hierarchical cross-linked carbon aerogels with transition metal-nitrogen sites for highly efficient industrial-level CO2 electroreduction. Advanced Functional Materials, 2021, 31(45): 2104377–2104386

    Article  Google Scholar 

  17. Zhao Y, Zhang X G, Bodappa N, et al. Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy. Energy & Environmental Science, 2022, 15(9): 3968–3977

    Article  Google Scholar 

  18. Mun Y, Lee S, Cho A, et al. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2019, 5(246): 82–88

    Article  Google Scholar 

  19. Juntrapirom S, Santatiwongchai J, Watwiangkham A, et al. Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO2 conversion to C2 products. Catalysis Science & Technology, 2021, 11(24): 8065–8078

    Article  Google Scholar 

  20. Zhong X, Liang S, Yang T, et al. Sn dopants with synergistic oxygen vacancies boost CO2 electroreduction on CuO nanosheets to CO at low overpotential. ACS Nano, 2022, 16(11): 19210–19219

    Article  Google Scholar 

  21. Zhu Z, Yu Z L, Gao W Y, et al. Controlled synthesis of intermetallic Au2Bi nanocrystals and Au2Bi/Bi heteronanocrystals with promoted electrocatalytic CO2 reduction properties. ChemSusChem, 2022, 15(10): 202200211

    Article  Google Scholar 

  22. Kuang S, Li M, Chen X, et al. Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction. Chinese Chemical Letters, 2023, 34(7): 108013–108016

    Article  Google Scholar 

  23. Jia S, Zhu Q, Chu M, et al. Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction. Angewandte Chemie International Edition, 2021, 60(19): 10977–10982

    Article  Google Scholar 

  24. Awais M, Kamal S, Ijaz F, et al. Improved catalytic performance of aspergillus flavus laccase immobilized on the zinc ferrite nanoparticles. Catalysis Letters, 2023, 5(153): 1240–1249

    Article  Google Scholar 

  25. Yan S, Peng C, Yang C, et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angewandte Chemie International Edition, 2021, 60(49): 25741–25745

    Article  Google Scholar 

  26. Chen M, Wan S, Zhong L, et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angewandte Chemie International Edition, 2021, 60(50): 26233–26237

    Article  Google Scholar 

  27. Nguyen D L T, Jee M S, Won D H, et al. Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catalysis Communications, 2018, 114(114): 109–113

    Article  Google Scholar 

  28. Qin B, Li Y, Fu H, et al. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst. ACS Applied Materials & Interfaces, 2018, 10(24): 20530–20539

    Article  Google Scholar 

  29. Leverett J, Tran-Phu T, Yuwono J A, et al. Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3− to urea. Advanced Energy Materials, 2022, 12(32): 2201500–2201508

    Article  Google Scholar 

  30. Sirisomboonchai S, Machida H, Bao Tran K V, et al. Efficient CO2 electrochemical reduction by a robust electrocatalyst fabricated by electrodeposition of indium and zinc over copper foam. ACS Applied Energy Materials, 2022, 5(8): 9846–9857

    Article  Google Scholar 

  31. Xu A, He B, Yu H, et al. A facile solution to mature cathode modified by hydrophobic dimethyl silicon oil (DMS) layer for electro-Fenton processes: Water proof and enhanced oxygen transport. Electrochimica Acta, 2019, 10(308): 158–166

    Article  Google Scholar 

  32. Feng Y, Yang H, Zhang Y, et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Letters, 2020, 20(11): 8282–8289

    Article  Google Scholar 

  33. Chen D, Zhou Z, Feng C, et al. An upgraded lithium ion battery based on a polymeric separator incorporated with anode active materials. Advanced Energy Materials, 2019, 9(15): 1803627–1803637

    Article  Google Scholar 

  34. Li L, Jin X, Yu X, et al. Bimetallic Cu-Bi catalysts for efficient electroreduction of CO2 to formate. Frontiers in Chemistry, 2022, 10(10): 983778

    Article  Google Scholar 

  35. Gao Y, Yu S, Zhou P, et al. Promoting electrocatalytic reduction of CO2 to C2H4 production by inhibiting C2H5OH desorption from Cu2O/C composite. Small, 2022, 18(9): 2105212

    Article  Google Scholar 

  36. Shan W, Liu R, Zhao H, et al. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano, 2020, 14(9): 11363–11372

    Article  Google Scholar 

  37. Hoang T T H, Verma S, Ma S, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. Journal of the American Chemical Society, 2018, 140(17): 5791–5797

    Article  Google Scholar 

  38. Hu M, Cai Z, Yang S, et al. Direct growth of uniform bimetallic core-shell or intermetallic nanoparticles on carbon via a surface-confinement strategy for electrochemical hydrogen evolution reaction. Advanced Functional Materials, 2023, 33(13): 2212097–2212106

    Article  Google Scholar 

  39. Ma Y, Yu J, Sun M, et al. Confined growth of silver-copper Janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction. Advanced Materials, 2022, 34(19): 2110607

    Article  Google Scholar 

  40. Yan T, Wang P, Xu Z H, et al. Copper (II) frameworks with varied active site distribution for modulating selectivity of carbon dioxide electroreduction. ACS Applied Materials & Interfaces, 2022, 14(11): 13645–13652

    Article  Google Scholar 

  41. Sang J, Wei P, Liu T, et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to multicarbon products. Angewandte Chemie International Edition, 2022, 61(5): e202114238

    Article  Google Scholar 

  42. Xu J, Sun Y, Lu M, et al. One-step electrodeposition fabrication of Ni3S2 nanosheet arrays on Ni foam as an advanced electrode for asymmetric supercapacitors. Science China Materials, 2019, 62(5): 699–710

    Article  Google Scholar 

  43. Grosse P, Yoon A, Rettenmaier C, et al. Dynamic transformation of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nature Communications, 2021, 12(1): 6736–6746

    Article  Google Scholar 

  44. Kunze S, Tanase L C, Prieto M J, et al. Plasma-assisted oxidation of Cu(100) and Cu(111). Chemical Science, 2021, 12(42): 14241–14253

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (Grant No. 2020YFA0710201), the China Postdoctoral Science Foundation (Grant No. 2023M731096), the National Natural Science Foundation of China (Grant Nos. 22022307, 22121002, and 21890761), and the Research Funds of Happiness Flower ECNU (Grant No. 2020ST2203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuaiqiang Jia, Haihong Wu or Buxing Han.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Jia, S., Han, S. et al. Electrochemical CO2 reduction to C2+ products over Cu/Zn intermetallic catalysts synthesized by electrodeposition. Front. Energy 18, 80–88 (2024). https://doi.org/10.1007/s11708-023-0898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0898-0

Keywords

Navigation