Skip to main content
Log in

L-glutamic monosodium amino acid-assisted approach to mordenite zeolite synthesis with application in the catalytic cracking of n-hexane

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mordenite was synthesized at 170 ºC under stirring (60 rpm) with different contents of L-glutamic acid monosodium salt (MSG) between 4 and 48 h. The materials were characterized by XRD, EDX, NH3-TPD, TG/DTG, SEM and N2 physisorption. The catalytic activity of zeolites was evaluated in the n-hexane cracking reaction at 550 ºC for 180 min. Mordenite was obtained with high relative crystallinity (83 ˗ 101%). The insertion of the amino acid salt reduced the acidity of the zeolites from 0.788 to 0.612 mmol g-1. Thermal analyses indicated the complete removal of MSG from the zeolite structure after washing, eliminating the calcination process and consequently, reducing costs. The micrographs revealed crystals of < 10 μm. N2 physisorption isotherms showed an increase in microporosity (SMicro from 411 to 445 m2 g-1 and VMicro from 0.165 to 0.178 cm3 g-1) and a higher degree of mesoporosity (VMeso from 0.009 to 0.012 cm3 g-1) for the samples with the lowest contents of MSG, indicating an optimal range for the addition of amino acid salt. The results of the n-hexane cracking reaction over mordenite samples revealed a higher tendency for the production of light olefins. The Mor/6Glut sample demonstrated high activity and a slower deactivation rate than conventional mordenite, due to the synergy of its lower acidity and mesoporosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Yao, X. Feng, J. Fan, Y. He, R. Kosol, Y. Zeng, G. Liu, Q. Ma, G. Yang, N. Tsubaki, Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110431

    Article  Google Scholar 

  2. Y. Zhou, J. Zhang, L. Wang, X. Cui, X. Liu, S.S. Wong, H. An, N. Yan, J. Xie, C. Yu, P. Zhang, Y. Du, S. Xi, L. Zheng, X. Cao, Y. Wu, Y. Wang, C. Wang, H. Wen, L. Chen, H. Xing, J. Wang, Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science. (2021). https://doi.org/10.1126/science.aax5776

    Article  PubMed  PubMed Central  Google Scholar 

  3. X. Ren, S. Yang, R. Xu, M. Guo, W. Huang, M. Ding, J. Zhong, Mono- and di-valent ion exchange of mordenite membranes for dehydration of acetic acid by pervaporation. J. Membr. Sci. (2022). https://doi.org/10.1016/j.memsci.2021.119998

    Article  Google Scholar 

  4. M. Moshoeshoe, M.S. Nadiye-Tabbiruka, V. Obuseng, A review of the Chemistry, structure, Properties and Applications of Zeolites. Am. J. Mater. Sci. (2017). https://doi.org/10.5923/j.materials.20170705.12

    Article  Google Scholar 

  5. A. Kostyniuk, D. Bajec, B. Likozar, Catalytic hydrocracking reactions of tetralin as aromatic biomass tar model compound to benzene/toluene/xylenes (BTX) over zeolites under ambient pressure conditions. J. Ind. Eng. Chem. (2021). https://doi.org/10.1016/j.jiec.2021.01.010

    Article  Google Scholar 

  6. J.G. Pacheco Filho, M. Schmal, J.L. Monteiro, A study on toluene disproportionation over mordenite. Catal. Today. 5, 4 (1989). https://doi.org/10.1016/0920-5861(89)80014-8

    Article  Google Scholar 

  7. S.V. Konnov, I.I. Ivanova, O. Ponomareva, V.I. Zaikovskii, Hydroisomerization of n-alkanes over Pt-modified micro/mesoporous materials obtained by mordenite recrystallization. Microporous Mesoporous Mater. 164, 222–231 (2012). https://doi.org/10.1016/j.micromeso.2012.08.017

    Article  CAS  Google Scholar 

  8. S. Li, H. Wu, R.C.J. van de Poll, R.R.M. Joosten, N. Kosinov, E.J.M. Hensen, Synthesis of Nanocrystalline Mordenite Zeolite with Improved Performance in Benzene Alkylation and n-Paraffins hydroconversion. ChemCatChem. 14, 9 (2022). https://doi.org/10.1002/cctc.202101852

    Article  CAS  Google Scholar 

  9. O.V. Shvets, K.M. Konysheva, M.V. Shamzhy, M.V. Opanasenko, P.S. Yaremov, C. Xiao, X. Zou, J. Čejka, Mordenite nanorods and nanosheets prepared in presence of gemini type surfactants. Catal. Today. 324, 115–122 (2019). https://doi.org/10.1016/j.cattod.2018.10.043

    Article  CAS  Google Scholar 

  10. M.F. Menoufy, A.E. Nadia, H.S. Ahmed, Catalytic Dewaxing for Lube Oil production. Pet. Sci. Technol. 27, 6 (2009). https://doi.org/10.1080/10916460802104172

    Article  CAS  Google Scholar 

  11. K. Segawa, H. Tachibana, Highly selective methylamine synthesis over modified mordenite catalysts. J. Catal. 131, 2 (1991). https://doi.org/10.1016/0021-9517(91)90280-H

    Article  Google Scholar 

  12. F.R. Best, A. Mundstock, P.A. Kißling, H. Richter, K.D.J. Hindricks, A. Huang, P. Behrens, J. Caro, Boosting dimethylamine formation selectivity in a membrane Reactor by in situ water removal. Ind. amp; Eng. Chem. Res. 61, 1 (2021). https://doi.org/10.1021/acs.iecr.1c04149

    Article  CAS  Google Scholar 

  13. D. Kwon, M. Numan, J. Kim, M. Yilmaz, S.-E. Park, H. Ihee, C. Jo, Tailoring the CO2 selective adsorption properties of MOR zeolites by post functionalization. J. CO2 Util. 62 (2022). https://doi.org/10.1016/j.jcou.2022.102064

  14. A.A. Alomair, Y. Alqaheem, Optimization of Mordenite membranes using sucrose precursor for pervaporation of water-ethanol mixtures. Membranes. 11, 3 (2021). https://doi.org/10.3390/membranes11030160

    Article  CAS  Google Scholar 

  15. Y. Yang, J. Ding, C. Xu, W. Zhu, P. Wu, An insight into crystal morphology-dependent catalytic properties of MOR-type titanosilicate in liquid-phase selective oxidation. J. Catal. 325, 101–110 (2015). https://doi.org/10.1016/j.jcat.2015.03.001

    Article  CAS  Google Scholar 

  16. R.C. Lima, C.W. Lopes, J. Villarroel-Rocha, L. Bieseki, K. Sapag, S.B.C. Pergher, Organic-Free Synthesis of Finned Mordenite Zeolite. Nanomaterials. 12, 15 (2022). https://doi.org/10.3390/nano12152623

    Article  CAS  Google Scholar 

  17. L. Zhang, S. Xie, W. Xin, X. Li, S. Liu, L. Xu, Crystallization and morphology of mordenite zeolite influenced by various parameters in organic-free synthesis. Mater. Res. Bull. 46, 6 (2011). https://doi.org/10.1016/j.materresbull.2011.02.018

    Article  CAS  Google Scholar 

  18. Q. Lang, G. Fu, H. Zhao, J. Wang, X. Yang, V. Valtchev, Biomineralization at the Molecular Level: amino acid-assisted crystallization of Zeotype AlPO4•1.5H2O–H3. Cryst. Growth Des. 21, 12 (2021). https://doi.org/10.1021/acs.cgd.1c01160

    Article  CAS  Google Scholar 

  19. R.F. Lobo, S.I. Zones, M.E. Davis, Structure-direction in Zeolite Synthesis. J. Incl. Phenom. Macrocycl. Chem. 21, 1 (1995). https://doi.org/10.1007/BF00709411

    Article  Google Scholar 

  20. M.A. Klunk, S.B. Schröpfer, S. Dasgupta, M. Das, N.R. Caetano, A.N. Impiombato, P.R. Wander, C.A.M. Moraes, Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon. Chem. Pap. 74, 2481–2489 (2020). https://doi.org/10.1007/s11696-020-01095-4

    Article  CAS  Google Scholar 

  21. L. Bai, Z. Xiong, E. Zhan, S. Li, W. Shen, Piperazine as a versatile organic structure-directing agent for zeolite synthesis: effect of SiO2/Al2O3 ratio on phase selectivity. J. Mater. Sci. 54, 7589–7602 (2019). https://doi.org/10.1007/s10853-019-03433-8

    Article  CAS  ADS  Google Scholar 

  22. E.A. Abdelrahman, R.M. Hegazey, A. Alharbi, Facile synthesis of Mordenite nanoparticles for efficient removal of pb(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 30, 1369–1383 (2019). https://doi.org/10.1007/s10904-019-01238-5

    Article  CAS  Google Scholar 

  23. U. Khalil, O. Muraza, Microwave-assisted hydrothermal synthesis of mordenite zeolite: optimization of synthesis parameters. Microporous Mesoporous Mater. 232, 211–217 (2016). https://doi.org/10.1016/j.micromeso.2016.06.016

    Article  CAS  Google Scholar 

  24. B.K. Singh, Y. Kim, S.B. Baek, A. Meena, S. Sultan, J.H. Kwak, K.S. Kim, Template free facile synthesis of mesoporous mordenite for bulky molecular catalytic reactions. J. Ind. Eng. Chem. 57, 363–369 (2018). https://doi.org/10.1016/j.jiec.2017.08.044

    Article  CAS  Google Scholar 

  25. S. Wang, B. He, R. Tian, C. Sun, R. Dai, X. Li, X. Wu, X. An, X. Xie, Synthesis and catalytic performance of hierarchically structured MOR zeolites by a dual-functional templating approach. J. Colloid Interface Sci. 527, 339–345 (2018). https://doi.org/10.1016/j.jcis.2018.05.053

    Article  CAS  PubMed  ADS  Google Scholar 

  26. A. Bolshakov, D.E.R. Hidalgo, A.J.F. van Hoof, N. Kosinov, E.J.M. Hensen, Mordenite Nanorods prepared by an Inexpensive pyrrolidine-based Mesoporogen for Alkane Hydroisomerization. ChemCatChem. 11, 12 (2019). https://doi.org/10.1002/cctc.201900298

    Article  CAS  Google Scholar 

  27. A. Kornas, J.E. Olszówka, M. Urbanova, K. Mlekodaj, L. Brabec, J. Rathousky, J. Dedecek, V. Pashkova, Milling Activation for the Solvent-Free Synthesis of the Zeolite Mordenite. EurJIC 2020, 29 (2020). https://doi.org/10.1002/ejic.202000320

  28. A. Kornas, J.E. Olszówka, M. Urbanova, L. Brabec, J. Rathousky, J. Dedecek, V. Pashkova, Ultrasonic pretreatment as a Tool for the Preparation of low-defect Zeolite Mordenite. ACS Omega. 6, 3 (2021). https://doi.org/10.1021/acsomega.0c05655

    Article  CAS  Google Scholar 

  29. S.K. Rajabi, Sh. Sohrabnezhad, synthesis and characterization of magnetic core with two shells: Mordenite zeolite and CuO to form Fe3O4@MOR@CuO core-shell: as a visible light driven photocatalyst. Microporous Mesoporous Mater. 242, 136–143 (2016). https://doi.org/10.1016/j.micromeso.2017.01.024

    Article  CAS  Google Scholar 

  30. S.K. Rajabi, Sh. Sohrabnezhad, Fabrication and characteristic of Fe3O4@MOR@CuO core-shell for investigation antibacterial properties. J. Fluor. Chem. 206, 36–42 (2018). https://doi.org/10.1016/j.jfluchem.2017.12.010

    Article  CAS  Google Scholar 

  31. B.B. Munavalli, M.Y. Kariduraganavar, Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application. Electrochim. Acta. 296, 294–307 (2019). https://doi.org/10.1016/j.electacta.2018.11.056

    Article  CAS  Google Scholar 

  32. B. Velaga, R.P. Parde, J. Soni, N.R. Peela, Synthesized hierarchical mordenite zeolites for the biomass conversion to levulinic acid and the mechanistic insights into humins formation. Microporous Mesoporous Mater. 287, 18–28 (2019). https://doi.org/10.1016/j.micromeso.2019.05.049

    Article  CAS  Google Scholar 

  33. S. Sakthinathan, P. Tamizhdurai, A. Ramesh, T.-W. Chiu, V.L. Mangesh, S. Veerarajan, K. Shanthi, Platinum incorporated mordenite zeolite modified glassy carbon electrode used for selective electrochemical detection of mercury ions. Microporous Mesoporous Mater. 292, 109770 (2020). https://doi.org/10.1016/j.micromeso.2019.109770

    Article  CAS  Google Scholar 

  34. Y. Wu, M. Zhou, B. Zhang, B. Wu, J. Li, J. Qiao, X. Guan, F. Li, Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale. 6, 2 (2014). https://doi.org/10.1039/C3NR04390H

    Article  Google Scholar 

  35. J. Zhang, S. Bai, Z. Chen, Y. Wang, L. Dong, H. Zheng, F. Caib, M. Hong, Core–shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. J. Mater. Chem. A 5, 39 (2017). https://doi.org/10.1039/C7TA05048H

    Article  ADS  Google Scholar 

  36. Q. Zhang, A. Mayoral, O. Terasaki, Q. Zhang, B. Ma, C. Zhao, G. Yang, J. Yu, Amino acid-assisted construction of single-crystalline hierarchical Nanozeolites via oriented-aggregation and intraparticle ripening. J. Am. Chem. Soc. 141, 9 (2019). https://doi.org/10.1021/jacs.8b11734

    Article  CAS  Google Scholar 

  37. G. Yang, J. Han, Z. Qiu, X. Chen, Z. Feng, J. Yu, An amino acid-assisted approach to fabricate nanosized hierarchical TS-1 zeolites for efficient oxidative desulfurization. Inorg. Chem. Front. 7, 10 (2020). https://doi.org/10.1039/C9QI01543D

    Article  Google Scholar 

  38. J. Zhao, L. Dong, Y. Wang, J. Zhang, R. Zhu, C. Li, M. Hong, Amino-acid modulated hierarchical In/H-Beta zeolites for selective catalytic reduction of NO with CH4 in the presence of H2O and SO2. Nanoscale. 14, 15 (2022). https://doi.org/10.1039/D2NR00731B

    Article  Google Scholar 

  39. M. Hong, Z.W. Chen, J. Zhang, L. Dong, Y.D. Wang, C. Chen, W. Qian, S.W. Wang, Z.A. Huang, X.N. Yuan, Synthesis and application of hierarchical zeolites prepared using amino-acid mesoporogens. IOP Conf. Ser. : Mater. Sci. Eng. 479, 012113 (2019). https://doi.org/10.1088/1757-899X/479/1/012113

    Article  CAS  Google Scholar 

  40. A.M. Naglah, M.A. Al-Omar, A.A. Almehizia, H.M. AlKahtani, A.J. Obaidullah, M.A. Bhat, N.S. Al-Shakliah, Application of Nanosized Zeolite X modified with glutamic acid as a Novel Composite for the efficient removal of Co(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 31, 2105–2115 (2021). https://doi.org/10.1007/s10904-021-01913-6

    Article  CAS  Google Scholar 

  41. D.P.S. Silva, A.T. Santos, T.R.S. Ribeiro, J.R.S. Solano, R.K.B.C. Cavalcanti, B.J.B. Silva, P.H.L. Quintela, A.O.S. Silva, Monosodium glutamate-mediated hierarchical porous formation in LTA zeolite to enhance CO2 adsorption performance. J. Sol-Gel Sci. 100, 360–372 (2021). https://doi.org/10.1007/s10971-021-05644-5

    Article  CAS  Google Scholar 

  42. A. Behr, T. Seidensticker, Building blocks of life - amino acids. Chemistry of Renewables (Springer, Berlin, 2020), 251–264. https://doi.org/10.1007/978-3-662-61430-3_14

    Chapter  Google Scholar 

  43. B.O. Hincapie, L.J. Garces, Q. Zhang, A. Sacco, S.L. Suib, Synthesis of mordenite nanocrystals. Microporous Mesoporous Mater. 67, 19–26 (2004). https://doi.org/10.1016/j.micromeso.2003.09.026

    Article  CAS  Google Scholar 

  44. T. Xiao, M. Yabushita, T. Nishitoba, R. Osuga, M. Yoshida, M. Matsubara, S. Maki, K. Kanie, T. Yokoi, W. Cao, A. Muramatsu, Amorphous Aluminosilicates, ACS Omega. 6, 5176–5182 (2021). https://doi.org/10.1021/acsomega.0c05059. Organic Structure-Directing Agent-Free Synthesis of Mordenite-Type Zeolites Driven by Al-Rich

    Article  CAS  PubMed  Google Scholar 

  45. L.V.S. Júnior, T.R.S. Ribeiro, B.J.B. Silva, P.H.L. Quintela, S.L. Alencar, J.G.A.P. Filho, A.O.S. Silva, Different approaches to the synthesis of ZSM-22 zeolite with application in n-heptane cracking. Res. Soc. Dev. 11, e6411326070 (2022). https://doi.org/10.33448/rsd-v11i3.26070

    Article  Google Scholar 

  46. O.S. Travkina, M.R. Agliullin, R.Z. Kuvatova, I.N. Pavlova, N. Narender, B.I. Kutepov, New method of synthesis of hierarchical mordenite of high crystallinity and its application in hydroizomerization of benzene-n-heptane mixture. J. Porous Mater. 26, 995–1004 (2019). https://doi.org/10.1007/s10934-018-0694-0

    Article  CAS  Google Scholar 

  47. P.K. Bajpal, M.S. Rao, K.V.G.K. Gokhale, Synthesis of Mordenite Type Zeolite. Ind. Eng. Chem. Prod. Res. Dev. 17, 223–227 (1978). https://doi.org/10.1021/i360067a009

    Article  Google Scholar 

  48. G.J. Kim, W.S. Ahn, Direct synthesis and characterization of High-SiO2-Content mordenites. Zeolites. 11, 745–750 (1991). https://doi.org/10.1016/S0144-2449(05)80183-6

    Article  CAS  Google Scholar 

  49. M. Choudhury, P.C. Borthakur, T. Bora, Syntheis and characterisation of silicious mordenite. Indian J. Chem. Technol. 5, 1–6 (1998)

    CAS  Google Scholar 

  50. F.C. Meunier, D. Verboekend, J.-P. Gilson, J.C. Groen, J. Pérez-Ramírez, Influence of crystal size and probe molecule on diffusion in hierarchical ZSM-5 zeolites prepared by desilication. Microporous Mesoporous Mater. 148, 115–121 (2012). https://doi.org/10.1016/j.micromeso.2011.08.002

    Article  CAS  Google Scholar 

  51. F. Lónyi, J. Valyon, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous Mesoporous Mater. 47, 293–301 (2001). https://doi.org/10.1016/S1387-1811(01)00389-4

    Article  Google Scholar 

  52. M. Niwa, N. Katada, Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catal. Surv. Asia. 1, 215–226 (1997). https://doi.org/10.1023/A:1019033115091

    Article  CAS  Google Scholar 

  53. A. Aranzabal, J.A. González-Marcos, M. Romero-Sáez, J.R. González-Velasco, M. Guillemot, P. Magnoux, Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Appl. Catal. B 88, 533–541 (2009). https://doi.org/10.1016/j.apcatb.2008.10.007

    Article  CAS  Google Scholar 

  54. J. Dhainaut, T.J. Daou, N. Bats, B. Harbuzaru, G. Lapisardi, L. Rouleau, J. Patarin, The influence of L-lysine and PDADMA on the crystal size and porosity of zeolite Y material. Microporous Mesoporous Mater. 170, 346–351 (2013). https://doi.org/10.1016/j.micromeso.2012.12.021

    Article  CAS  Google Scholar 

  55. H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Synthesis of mordenite zeolite in absence of organic template. Adv. Powder Technol. 23, 757–760 (2012). https://doi.org/10.1016/j.apt.2011.10.003

    Article  CAS  Google Scholar 

  56. R.S. Nunes, E.T.G. Cavalheiro, Thermal behavior of glutamic acid and its sodium, lithium and ammonium salts. J. Therm. Anal. Calorim. 87, 627–630 (2007). https://doi.org/10.1007/s10973-006-7788-7

    Article  CAS  Google Scholar 

  57. G.J. Kim, W.S. Ahn, Direct synthesis and characterization of high-SiO2-content mordenites. Zeolites 11, 745 – 50 (1991). https://doi.org/10.1016/S0144-2449(05)80183-6

  58. L. Zhang, A.N.C. van Laak, P.E. de Jongh, K.P. de Jong, Synthesis of large mordenite crystals with different aspect ratios. Microporous Mesoporous Mater. 126, 115–124 (2009). https://doi.org/10.1016/j.micromeso.2009.05.034

    Article  CAS  Google Scholar 

  59. B. Velaga, N.R. Peela, Seed-assisted and OSDA-free synthesis of H-mordenite zeolites for efficient production of 5-hydroxymethylfurfural from glucose. Microporous Mesoporous Mater. 279, 211–219 (2019). https://doi.org/10.1016/j.micromeso.2018.12.028

    Article  CAS  Google Scholar 

  60. S. Li, R.C.J. van de Poll, N. Kosinov, E.J.M. Hensen, Facile synthesis of nanosized mordenite and beta zeolites with improved catalytic performance: non-surfactant diquaternary ammonium compounds as structure-directing agents. Inorg. Chem. Front. 9, 3200–3316 (2022). https://doi.org/10.1039/D2QI00696K

    Article  CAS  Google Scholar 

  61. T.P. Paula, M.F.V. Marques, M.R.C. Marques, M.S. Oliveira, S.N. Monteiro, Thermal and Catalytic Pyrolysis of Urban Plastic Waste: modified Mordenite and ZSM-5 zeolites. Chemistry. 4, 297–315 (2022). https://doi.org/10.3390/chemistry4020023

    Article  CAS  Google Scholar 

  62. J.T. Miller, P.D. Hopkins, B.L. Meyers, G.J. Ray, R.T. Roginski, G.W. Zajac, N.H. Rosenbaum, The effect of nonframework aluminum on acidity in dealuminated mordenite. J. Catal. 138, 115–128 (1992). https://doi.org/10.1016/0021-9517(92)90011-6

    Article  CAS  Google Scholar 

  63. G.A. Nasser, T. Kurniawan, T. Tago, I.A. Bakare, T. Taniguchi, Y. Nakasaka, T. Masuda, Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. J. Taiwan. Inst. Chem. Eng. 61, 20–25 (2016). https://doi.org/10.1016/j.jtice.2015.11.025

    Article  CAS  Google Scholar 

  64. H. Issa, J. Toufaily, T. Hamieh, J.D. Comparot, A. Sachse, L. Pinard, Mordenite etching in pyridine: textural and chemical properties rationalized by toluene disproportionation and n-hexane cracking. J. Catal. 374, 409–421 (2019). https://doi.org/10.1016/j.jcat.2019.05.004

    Article  CAS  Google Scholar 

  65. B. Liu, D. Slocombe, M. AlKinany, H. AlMegren, J. Wang, J. Arden, A. Vai, S. Gonzalez-Cortes, T. Xiao, V. Kuznetsov, Edwards. Advances in the study of coke formation over zeolite catalysts in the methanol-to-hydrocarbon process. Appl. Petrochem. Res. 6, 209–215 (2016). https://doi.org/10.1007/s13203-016-0156-z

    Article  CAS  Google Scholar 

  66. N. Chaouati, A. Soualah, M. Chater, L. Pinard, Beneficial changes in coke properties with alkaline treatment on aluminum-rich mordenite. J. Catal. 353, 28–36 (2017). https://doi.org/10.1016/j.jcat.2017.06.024

    Article  CAS  Google Scholar 

  67. X. Hou, Y. Qiu, X. Zhang, G. Liu, Effects of regeneration of ZSM-5 based catalysts on light olefins production in n-pentane catalytic cracking. Chem. Eng. J. 321, 572–583 (2017). https://doi.org/10.1016/j.cej.2017.03.127

    Article  CAS  Google Scholar 

  68. X. Li, W. Li, F. Rezaei, A. Rownaghi, Catalytic cracking of n-hexane for producing light olefins on 3D-printed monoliths of MFI and FAU zeolites. Chem. Eng. J. 333, 545–553 (2018). https://doi.org/10.1016/j.cej.2017.10.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) for financial support.

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE).

Author information

Authors and Affiliations

Authors

Contributions

E.G.C.G. and B.J.B.S.: Writing - original draft. All authors reviewed the manuscript.

Corresponding author

Correspondence to Elisa G. C. Gouveia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouveia, E.G.C., Silva, B.J.B., Motta, R.J.B. et al. L-glutamic monosodium amino acid-assisted approach to mordenite zeolite synthesis with application in the catalytic cracking of n-hexane. J Porous Mater 31, 365–376 (2024). https://doi.org/10.1007/s10934-023-01518-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01518-z

Keywords

Navigation