Skip to main content

Advertisement

Log in

Effect of surfactant on electrochemical performance of Co3O4 electrode and its application in supercapacitor

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous nanoflower-like Co3O4 material on conductive nickel foam substrate was synthesized by hydrothermal reaction combined with thermal decomposition method. The effects of surfactants on the morphology and electrochemical properties of Co3O4 electrodes were investigated. The Co3O4 electrodes modified with SDS, PVP and CTAB surfactants exhibited nano-flower, nano-rod and honeycomb array structures, respectively. Compared with PVP and CTAB, the addition of SDS surfactant can promote the connection of nanostructures in the solution-recrystallization process, provide a large activity area, and reduce the crystallinity of materials. In addition, SDS inserted into the interlayers is decomposed to form the hierarchical flower-like structure. The Co3O4-SDS sample displayed superior electrochemical properties. At the current density of 1 A g− 1, the specific capacitance of Co3O4-SDS was 1150 F g− 1. The specific capacitance retention was 74% after 5000 charge-discharge cycles at the current density of 8 A g− 1. The maximum energy density of the assembled Co3O4-SDS//AC supercapacitor reached 30 Wh kg− 1 even though the power density was 813 W kg− 1. The energy density remained 9.0 Wh kg− 1 as the power density increased to 16,200 W kg− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.T. Ma, J.D. Chen, M. Chen, S.S. Liu, J.T. Luo, H.B. Zou, W. Yang, S.Z. Chen, Nickel -cobalt -molybdenum sulfides with adjustable morphology via coprecipitation and hydrothermal conversion as high-performance electrodes for asymmetric supercapacitors J. Alloys Compd., 838 (2020) https://doi.org/10.1016/j.jallcom.2020.155631

  2. V. Gajraj, C.R. Mariappan, Electrochemical performances of asymmetric aqueous supercapacitor based on porous Cu3Mo2O9 petals and La2Mo3O12 nanoparticles fabricated through a simple co-precipitation method. Appl. Surf. Sci., 512 (2020) https://doi.org/10.1016/j.apsusc.2020.145648

  3. V.T. Chebrolu, B. Balakrishnan, V. Raman, I. Cho, J.S. Bak, K. Prabakar, H.J. Kim, Co-electrodeposition of NiCu(OH)2@Ni-Cu-Se hierarchical nanoparticle structure for supercapacitor application with enhanced performance. Appl. Surf. Sci., 506 (2020) https://doi.org/10.1016/j.apsusc.2019.145015

  4. D.X. Guo, X.M. Song, F.B. Li, L.C. Tan, H.Y. Ma, L.L. Zhang, Y.Q. Zhao, Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor. Colloids And Surfaces A-Physicochemical And Engineering Aspects 546, 1–8 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.072

    Article  CAS  Google Scholar 

  5. S. Vijayakumar, A.K. Ponnalagi, S. Nagamuthu, G. Muralidharan, Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochim. Acta 106, 500–505 (2013). https://doi.org/10.1016/j.electacta.2013.05.121

    Article  CAS  Google Scholar 

  6. R. Lakra, R. Kumar, P.K. Sahoo, D. Thatoi, A. Soam, A mini-review: Graphene based composites for supercapacitor application. Inorg. Chem. Commun., 133 (2021) https://doi.org/10.1016/j.inoche.2021.108929

  7. M.Q. Wang, X.L. Liu, B.Y. Qin, Z.Y. Li, Y.F. Zhang, W. Yang, H.S. Fan, In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior na + storage. Chem. Eng. J., 451 (2023) https://doi.org/10.1016/j.cej.2022.138508

  8. Z.Z. Zeng, L.Z. Zhu, E.S. Han, X.C. Xiao, Y.R. Yao, L.M. Sun, Soft-templating and hydrothermal synthesis of NiCo2O4 nanomaterials on ni foam for high-performance supercapacitors. Ionics 25, 2791–2803 (2019). https://doi.org/10.1007/s11581-018-2813-y

    Article  CAS  Google Scholar 

  9. D.S. Patil, S.A. Pawar, J.C. Shin, Core-shell structure of Co3O4@CdS for high performance electrochemical supercapacitor. Chem. Eng. J. 335, 693–702 (2018). https://doi.org/10.1016/j.cej.2017.11.007

    Article  CAS  Google Scholar 

  10. J.J. Xu, T. Xiao, X.Y. Tan, P. Xiang, L.H. Jiang, D. Wu, J. Li, S.L. Wang, A new asymmetric aqueous supercapacitor: Co3O4//Co3O4@polypyrrole. J. Alloys Compd. 706, 351–357 (2017). https://doi.org/10.1016/j.jallcom.2017.02.253

    Article  CAS  Google Scholar 

  11. Y.C. Wang, T. Zhou, K. Jiang, P.M. Da, Z. Peng, J. Tang, B.A. Kong, W.B. Cai, Z.Q. Yang, G.F. Zheng, Reduced Mesoporous Co3O4 nanowires as efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Adv. Energy Mater., 4 (2014) https://doi.org/10.1002/aenm.201400696

  12. L.T. Hoa, J.S. Chung, S.H. Hur, A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sens. Actuators B-Chemical 223, 76–82 (2016). https://doi.org/10.1016/j.snb.2015.09.009

    Article  CAS  Google Scholar 

  13. C. Sambathkumar, R. Ranjithkumar, S.E. Arasi, A. Manikandan, N. Nallamuthu, M.K. Kumar, A. Arivarasan, P. Devendran, High-performance nickel sulfide modified electrode material from single-source precursor for energy storage application. J. Mater. Science-Materials Electron. 32, 20058–20070 (2021). https://doi.org/10.1007/s10854-021-06383-7

    Article  CAS  Google Scholar 

  14. C. Sambathkumar, N. Nallamuthu, M.K. Kumar, S. Sudhahar, P. Devendran, Electrochemical exploration of cobalt sulfide nanoparticles synthesis using cobalt diethyldithiocarbamate as single source precursor for hybrid supercapacitor device. J. Alloys Compd., 920 (2022) https://doi.org/10.1016/j.jallcom.2022.165839

  15. F. Ali, N.R. Khalid, Effect of calcination temperature on structural, morphological and electrochemical properties of Sn doped Co3O4 nanorods. Ceram. Int. 46, 24137–24146 (2020). https://doi.org/10.1016/j.ceramint.2020.06.193

    Article  CAS  Google Scholar 

  16. R.S. Babu, R. Vinodh, A.L.F. de Barros, L.M. Samyn, K. Prasanna, M.A. Maier, C.H.F. Alves, H.J. Kim, Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode. Chem. Eng. J. 366, 390–403 (2019). https://doi.org/10.1016/j.cej.2019.02.108

    Article  CAS  Google Scholar 

  17. G. Rajeshkhanna, E. Umeshbabu, G. Ranga Rao, Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. J. Colloid Interface Sci. 487, 20–30 (2017). https://doi.org/10.1016/j.jcis.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  18. Y.J. Xu, L.C. Wang, P.Q. Cao, C.L. Cai, Y.B. Fu, X.H. Ma, Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors. J. Power Sources 306, 742–752 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.106

    Article  CAS  Google Scholar 

  19. S.N. Amirtharaj, M. Mariappan, Rapid and controllable synthesis of Mn2O3 nanorods via a sonochemical method for supercapacitor electrode application. Appl. Phys. A-Materials Sci. Process., 127 (2021) https://doi.org/10.1007/s00339-021-04774-5

  20. C.Y. Du, E.S. Han, L.M. Sun, S.P. Qiao, L.N. Li, Template agent for assisting in the synthesis of ZnCo2O4 on ni foam for high-performance supercapacitors. Ionics 26, 383–391 (2020). https://doi.org/10.1007/s11581-019-03189-w

    Article  CAS  Google Scholar 

  21. J. Zhang, X.L. Xie, C.J. Li, H. Wang, L.J. Wang, The role of soft colloidal templates in the shape evolution of flower-like MgAl-LDH hierarchical microstructures. RSC Adv. 5, 29757–29765 (2015). https://doi.org/10.1039/c5ra01561h

    Article  Google Scholar 

  22. J.L. Lv, M. Yang, T.X. Liang, H. Miura, Facile synthesis of Co3O4@MnO2 core-shell nanocomposites for high-performance supercapacitor. Mater. Lett. 197, 127–130 (2017). https://doi.org/10.1016/j.matlet.2017.03.127

    Article  CAS  Google Scholar 

  23. Y.S. Gai, Y.Y. Shang, L.Y. Gong, L.H. Su, L. Hao, F.Y. Dong, J.Z. Li, A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv. 7, 1038–1044 (2017). https://doi.org/10.1039/c6ra25950b

    Article  CAS  Google Scholar 

  24. D.U. Lee, B.J. Kim, Z.W. Chen, One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J. Mater. Chem. A 1, 4754–4762 (2013). https://doi.org/10.1039/c3ta01402a

    Article  CAS  Google Scholar 

  25. D.-W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie-International Edition 47, 373–376 (2008). https://doi.org/10.1002/anie.200702721

    Article  PubMed  Google Scholar 

  26. R. Kumar, A. Soam, V. Sahajwalla, Carbon coated cobalt oxide (CC-Co3O4) as electrode material for supercapacitor applications. Mater. Adv. 2, 2918–2923 (2021). https://doi.org/10.1039/d1ma00120e

    Article  CAS  Google Scholar 

  27. R. Ding, L. Qi, M.J. Jia, H.Y. Wang, Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors. J. Appl. Electrochem. 43, 903–910 (2013). https://doi.org/10.1007/s10800-013-0580-z

    Article  CAS  Google Scholar 

  28. B. Liu, D.Z. Kong, J. Zhang, Y. Wang, T.P. Chen, C.W. Cheng, H.Y. Yang, 3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. J. Mater. Chem. A 4, 3287–3296 (2016). https://doi.org/10.1039/c5ta09344a

    Article  CAS  Google Scholar 

  29. C. Sambathkumar, M.K. Kumar, N. Nallamuthu, K. Rajesh, P. Devendran, Investigations on electrochemical performances of Co(OH)2, Fe2O3 and Mn3O4 nanoparticles covered carbon micro spheres for supercapacitor application. Inorg. Chem. Commun., 134 (2021) https://doi.org/10.1016/j.inoche.2021.109057

  30. M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li, Mesoporous amorphous MnO2 as electrode material for supercapacitor. J. Solid State Electrochem. 11, 1101–1107 (2007). https://doi.org/10.1007/s10008-006-0246-4

    Article  CAS  Google Scholar 

  31. K. Chhetri, A.P. Tiwari, B. Dahal, G.P. Ojha, T. Mukhiya, M. Lee, T. Kim, S.H. Chae, A. Muthurasu, H.Y. Kim, A ZIF-8-derived nanoporous carbon nanocomposite wrapped with Co3O4-polyaniline as an efficient electrode material for an asymmetric supercapacitor. J. Electroanal. Chem., 856 (2020) https://doi.org/10.1016/j.jelechem.2019.113670

  32. R. Kumar, S.M. Youssry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura, A. Matsuda, Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor. J. Energy Storage, 30 (2020) https://doi.org/10.1016/j.est.2020.101539

  33. K. Seevakan, A. Manikandan, P. Devendran, A. Baykal, T. Alagesan, Electrochemical and magneto-optical properties of cobalt molybdate nano catalyst as high-performance supercapacitor. Ceram. Int. 44, 17735–17742 (2018). https://doi.org/10.1016/j.ceramint.2018.06.240

    Article  CAS  Google Scholar 

  34. T. Chen, S.Z. Li, L. Ma, X.Z. Zhao, G.J. Fang, Aldehyde reduced Co3O4 to form oxygen vacancy and enhance the electrochemical performance for oxygen evolution reaction and supercapacitors. Nanotechnology, 30 (2019) https://doi.org/10.1088/1361?6528/ab2a83

  35. H. Bigdeli, M. Moradi, S. Hajati, M.A. Kiani, J. Toth, Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor. Phys. E-Low-Dimensional Syst. Nanostruct. 94, 158–166 (2017). https://doi.org/10.1016/j.physe.2017.08.005

    Article  CAS  Google Scholar 

  36. D. Guo, X. Song, F. Li, L. Tan, H. Ma, L. Zhang, Y. Zhao, Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor. Colloids Surf., A 546, 1–8 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.072

    Article  CAS  Google Scholar 

  37. W.G. Huang, A.T. Zhang, X.R. Li, J.M. Tian, L.J. Yue, L. Cui, R.K. Zheng, D. Wei, J.Q. Liu, Multilayer NiMn layered double hydroxide nanosheets covered porous Co3O4 nanowire arrays with hierarchical structure for high-performance supercapacitors. J. Power Sources, 440 (2019) https://doi.org/10.1016/j.jpowsour.2019.227123

  38. G.H. Cheng, T.Y. Kou, J. Zhang, C.H. Si, H. Gao, Z.H. Zhang, O22/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 38, 155–166 (2017). https://doi.org/10.1016/j.nanoen.2017.05.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 21776051), Guangzhou Science and Technology Plan Project (Grant No.202201010079) and the Natural Science Foundation of Guangdong Province (Grant No. 2022A1515011715).

Author information

Authors and Affiliations

Authors

Contributions

Hanbo Zou: Resources, Writing - review & editing. Cuimiao Wang: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft. Zhiwei Feng: Data curation. Wei Yang: Investigation. Shengzhou Chen: Supervision.

Corresponding authors

Correspondence to Wei Yang or Shengzhou Chen.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Wang, C., Feng, Z. et al. Effect of surfactant on electrochemical performance of Co3O4 electrode and its application in supercapacitor. J Porous Mater 30, 965–974 (2023). https://doi.org/10.1007/s10934-022-01401-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01401-3

Keywords

Navigation