Skip to main content
Log in

Preparation and characterization of hydrophilic methylsilsesquioxane aerogels through adjusting the water/ethanol ratio

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Ever-increasing application domains of Methylsilsesquioxane aerogels place a higher demand on the diverse wettability. This work prepares hydrophilic Methylsilsesquioxane aerogels under ambient pressure (APD) using 25 ml water and ethanol (EtOH) as co-solvents (12–36 vol% ethanol) and CTAB as a surfactant. We also find that the unique Methylsilsesquioxane aerogels with hydrophilic surface and hydrophobic interior are prepared when the volume fraction of EtOH ranges between 0 and 12 vol% and 36–60 vol%. The surface consists of a thin layer derived from the dissolved CTAB, which is responsible for the hydrophilicity of Methylsilsesquioxane aerogels. The hydrophilicity and hydrophobicity of the interior of Methylsilsesquioxane aerogels are related to the aggregation form of CTAB in EtOH-water mixed solvent. Too low or too high volume fraction of ethanol causes CTAB to form micellar aggregates, resulting in hydrophobicity. Further study reveals that the microstructures of Methylsilsesquioxane aerogels including skeletal size and silica particle size are significantly affected by the volume fraction of EtOH in co-solvent, which further influences the content of CTAB. In summary, the work provides a new method for the preparation of Methylsilsesquioxane aerogels with hydrophilicity, which enables the customization of the wettability of Methylsilsesquioxane aerogels and facilitates the expansion of their diverse applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.V. Rao, S.D. Bhagat, H. Hirashima, G.M. Pajonk, J. Colloid Interface Sci. 300, 279 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. S.S. Kistler, Nature 127, 741 (1931)

    Article  CAS  Google Scholar 

  3. H. Yu, X. Liang, J. Wang, M. Wang, S. Yang, Solid State Sci. 48, 155 (2015)

    Article  CAS  Google Scholar 

  4. A.P. Rao, A.V. Rao, G.M. Pajonk, J. Sol-Gel Sci. Technol. 36, 285 (2005)

    Article  CAS  Google Scholar 

  5. S. Yun, H. Luo, Y. Gao, RSC Adv. 4, 4535 (2014)

    Article  CAS  Google Scholar 

  6. A. Soleimani Dorcheh, M.H. Abbasi, J. Mater. Process. Technol. 199, 10 (2008)

    Article  CAS  Google Scholar 

  7. Z. Li, S. Zhao, M.M. Koebel, W.J. Malfait, 41 (n.d.)

  8. J. Yang, H. Wu, G. Huang, Y. Liang, Y. Liao, Mater. Des. 133, 224 (2017)

    Article  CAS  Google Scholar 

  9. E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Renew. Sustain. Energy Rev. 34, 273 (2014)

    Article  CAS  Google Scholar 

  10. I. Smirnova, J. Mamic, W. Arlt, Langmuir 19, 8521 (2003)

    Article  CAS  Google Scholar 

  11. I. Smirnova, S. Suttiruengwong, W. Arlt, J. Non-Cryst Solids 350, 54 (2004)

    Article  CAS  Google Scholar 

  12. I. Smirnova, S. Suttiruengwong, M. Seiler, W. Arlt, Pharm. Dev. Technol. 9, 443 (2005)

    Article  Google Scholar 

  13. A. Venkateswara Rao, N.D. Hegde, H. Hirashima, J. Colloid Interface Sci. 305, 124 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. C.K. Leung, L. Lu, Y. Liu, H.S. Cheng, J.H. Tse, Energy Built Environ. 1, 215 (2020)

    Article  Google Scholar 

  15. C. Buratti, E. Belloni, F. Merli, M. Zinzi, Energy Build. 231, 110587 (2021)

    Article  Google Scholar 

  16. R. Baetens, B.P. Jelle, A. Gustavsen, Energy Build. 43, 761 (2011)

    Article  Google Scholar 

  17. A.A. Günay, H. Kim, N. Nagarajan, M. Lopez, R. Kantharaj, A. Alsaati, A. Marconnet, A. Lenert, N. Miljkovic, ACS Appl. Mater. Interfaces 10, 12603 (2018)

    Article  PubMed  Google Scholar 

  18. E. Meyer, B. Milow, L. Ratke, J. Supercrit Fluids 106, 62 (2015)

    Article  CAS  Google Scholar 

  19. N. Bheekhun, A.R. Abu Talib, M.R. Hassan, Adv. Mater. Sci. Eng. 2013, 1 (2013)

  20. A.P. Rao, A.V. Rao, G.M. Pajonk, Appl. Surf. Sci. 253, 6032 (2007)

    Article  CAS  Google Scholar 

  21. Z. Li, X. Cheng, S. He, X. Shi, H. Yang, J. Sol-Gel Sci. Technol. 76, 138 (2015)

    Article  CAS  Google Scholar 

  22. S. Štandeker, Z. Novak, Ž Knez, J. Colloid Interface Sci. 310, 362 (2007)

    Article  PubMed  Google Scholar 

  23. G. John, P.R. Reynolds, Coronado, L.W. Hrubesh, J. Non-Cryst Solids 292, 127 (2001)

    Article  Google Scholar 

  24. Y. Yu, X. Wu, J. Fang, J. Mater. Sci. 50, 5115 (2015)

    Article  CAS  Google Scholar 

  25. G. Wu, Y. Yu, X. Cheng, Y. Zhang, Mater. Chem. Phys. 129, 308 (2011)

    Article  CAS  Google Scholar 

  26. D.B. Mahadik, A.V. Rao, A.P. Rao, P.B. Wagh, S.V. Ingale, S.C. Gupta, J. Colloid Interface Sci. 356, 298 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Wang, Z. Li, L. Huber, X. Wu, S. Huang, Y. Zhang, R. Huang, Q. Liu, J. Sol-Gel Sci. Technol. 93, 111 (2020)

    Article  CAS  Google Scholar 

  28. S. Huang, X. Wu, Z. Li, L. Shi, Y. Zhang, Q. Liu, J. Porous Mater. 27, 1241 (2020)

    Article  CAS  Google Scholar 

  29. A.V. Rao, M.M. Kulkarni, D.P. Amalnerkar, T. Seth, J. Non-Cryst Solids 330, 187 (2003)

    Article  CAS  Google Scholar 

  30. Z. Li, Y. Zhang, S. Huang, X. Wu, L. Shi, Q. Liu, J. Nanoparticle Res. 22, 334 (2020)

    Article  CAS  Google Scholar 

  31. D.Y. Nadargi, S.S. Latthe, H. Hirashima, A.V. Rao, Microporous Mesoporous Mater. 117, 617 (2009)

    Article  CAS  Google Scholar 

  32. C.J. Brinker, G.W. Scherer, Sol-Gel Sci (Elsevier, 1990), pp. 452–513

  33. W. Wei, H. Hu, X. Ji, Z. Yan, W. Sun, J. Xie, Water Sci. Technol. 78, 402 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. X. Han, K.T. Hassan, A. Harvey, D. Kulijer, A. Oila, M.R.C. Hunt, L. Šiller, Adv. Mater. 30, 1706294 (2018)

    Article  Google Scholar 

  36. C.M. Phan, J. Mol. Liq 342, 117505 (2021)

    Article  CAS  Google Scholar 

  37. V.G. Parale, D.B. Mahadik, S.A. Mahadik, M.S. Kavale, A.V. Rao, P.B. Wagh, 7 (2012)

  38. Z. Li, X. Cheng, S. He, X. Shi, L. Gong, H. Zhang, Compos. Part. Appl. Sci. Manuf. 84, 316 (2016)

    Article  CAS  Google Scholar 

  39. S. Meng, J. Zhang, C. Wu, Y. Zhang, Q. Xiao, G. Lu, Mol. Simul. 40, 1052 (2014)

    Article  CAS  Google Scholar 

  40. Y. Luo, Z. Li, W. Zhang, H. Yan, Y. Wang, M. Li, Q. Liu, J. Non-Cryst Solids 503–504, 214 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51904336 and 52274248) and the Natural Science Foundation of Hunan Province (No.2020JJ4714).

Author information

Authors and Affiliations

Authors

Contributions

Mengtian Sun, Liling Wu, and Zhi Li wrote the main manuscript text. Yang Wang and Xiaowu Wang prepared Figs. 1, 2 and 3. Qiong Liu and Ming Li prepared Figs. 4, 5, 6, 7 and 8. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Ming Li or Zhi Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Wu, L., Wang, Y. et al. Preparation and characterization of hydrophilic methylsilsesquioxane aerogels through adjusting the water/ethanol ratio. J Porous Mater 30, 681–690 (2023). https://doi.org/10.1007/s10934-022-01368-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01368-1

Keywords

Navigation