Skip to main content

Advertisement

Log in

Research progress and potential materials of porous thick electrode with directional structure for lithium-sulfur batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Lithium–sulfur (Li–S) batteries have received much attention due to their high energy density (2600 Wh Kg−1). Extensive efforts have been made to further enhance the overall energy density by increasing S loading. Thick electrodes can substantially improve the loading mass of S, which offers new ideas for designing Li–S batteries. However, the poor ion transport performance in thick electrodes results in significantly electrochemical performance deterioration. Converting thick electrodes into the electrodes with high directional channels can effectively address the problems caused by the increase in electrode thickness. In this review, the recent progress of thick electrodes with oriented structures for Li–S batteries is reviewed. As a newly developed electrode, some materials that have the potential for fabricating thick electrode for Li–S batteries are summarized, here focusing on carbon-based materials, we discuss the prospects of porous carbon materials with oriented structures for thick electrodes, and look forward to their future, opportunities and challenges. Finally, a point of view on the development of directional structured thick electrodes is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data reproduced from Ref. [70]. b Schematic of a Li–S battery with electrode configuration I. The figure is reprinted from Ref. [71]. c Summary of the effects of polysulfide dissolution, shuttle phenomenon, effect on the cathode, insoluble products upon charge and discharge. The figure is reprinted from Ref. [72]. d Structure transformation of sulfur, Electrochemistry of sulfur showing an ideal charge–discharge profile, and inset denotes polysulfide (PS) shuttle. The figure is reprinted from Ref. [73]. e Relationship between the theoretical upper limit E/S ratio and areal sulfur loading at different sulfur cathode densities, The figure is reprinted from Ref. [74]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

The figure is reprinted from Ref. [117]. b The schematics of the electrode fabrication process through lyophilization and incorporating carbon fibers [78]. c Schematic showing the transport of Li+ and electron in the VACNT/S and DCNT/S electrodes. The figure is reprinted from Ref. [117]

Fig. 8

The figure is reprinted from Ref. [32]. b Schematic illustration and photograph of the flexible self-supporting GS/S paper. The figure is reprinted from Ref. [86]. c Schematic illustration for the synthetic procedure of SPAN/CNT electrodes. The figure is reprinted from Ref. [136]. d (i) The synthetic mechanism of selenium-doped PDATtSSe polymer as cathodes for lithium–organosulfur batteries, where m and n indicate the degree of polymerization. (ii) The presence of molecule CH2 = CHCH2SSSeH (m/z = 182, 183, 184, 186, and 188) was confirmed according to the abundance of Se isotopes. (iii) 1H NMR full spectra of the DADS monomer (green line) and PDATtSSe polymer (red line). The figure is reprinted from Ref. [137]. e Schematic illustration for the formation of S-TTCN composite: (1) Uniform coating a solid SiO2 layer and a porous SiO2 layer embedded with C 18 TMS molecules on MWNTs; (2) formation of porous carbon nanotube by carbonization of C 18 TMS; (3) etching SiO2 layers to obtain tube-in-tube carbon nanostructure (TTCN) with MWNTs encapsulated within hollow porous carbon nanotube; (4) sulfur infused into TTCN to fabricate S-TTCN composite. The figure is reprinted from Ref. [85]. f A schematic illustration of the experimental procedure and the formation of the ideal mesoporous structure of OMCF. The figure is reprinted from Ref. [39]. j Schematic illustration for the preparation of HCFs with adjustable pore sizes as the sulfur host [84] (Color figure online)

Fig. 9

The figure is reprinted from Ref. [150]. b TEM images of HCS annealed under different atmosphere: (i), (ii) HCS; (iii), (iv) PHCS. The figure is reprinted from Ref. [151]. c TEM images of (i) mesoporous carbon hollow spheres (ii) C@S nanocomposite and (iii) EDX analysis of C@S nanocomposite showing the presence of sulfur. The figure is reprinted from Ref. [53]. d Schematic illustration of the assembled process of the HCNSs. The figure is reprinted from Ref. [93]. e Schematic illustration of the preparation procedure of S@HNC hybrid. The figure is reprinted from Ref. [75]

Fig. 10

The figure is reprinted from Ref. [153]. b Schematic illustrations for the synthesis of HPCM: (i) hard-templating strategy, (ii) soft-templating strategy, and (iii) self-templating strategy. The figure is reprinted from Ref. [154]. c Schematic illustration: the hard-templating procedures for the synthesis of HCSF and HCSF@C. The figure is reprinted from Ref. [94]. d Double-shell hollow carbon with high surface area and porosity. The figure is reprinted from Ref. [52]. e Schematic illustration of an in-situ strategy for the preparation of 3D S@PGC composites [156]

Similar content being viewed by others

References

  1. Y. Fang, X. Yu, X.W.D. Lou, Angew. Chem. Int. Ed. 56(49), 15506 (2017)

    Article  CAS  Google Scholar 

  2. Z. Xueqiang, C. Xinbing, Z. Qiang, J. Energy Chem. 25, 967–984 (2016)

    Article  Google Scholar 

  3. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J. Tarascon, Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191

    Article  CAS  Google Scholar 

  4. N. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. 51(40), 9994–10024 (2012)

    Article  CAS  Google Scholar 

  5. S. Evers, L.F. Nazar, Acc. Chem. Res. 46(5), 1135–1143 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. A. Manthiram, Y. Fu, Y. Su, Acc. Chem. Res. 46(5), 1125–1134 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. L. Luo, S. Chung, A. Manthiram, Adv. Energy Mater. 8, 1801014 (2018). https://doi.org/10.1002/aenm.201801014

    Article  CAS  Google Scholar 

  8. S.S. Zhang, Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081

    Article  CAS  Google Scholar 

  9. L. Miao, W. Wang, K. Yuan, Y. Yang, A. Wang, Chem. Commun. 50, 13231–13234 (2014). https://doi.org/10.1039/C4CC03410D

    Article  CAS  Google Scholar 

  10. M. Zhao, B. Li, H. Peng, H. Yuan, J. Wei, J. Huang, Angew. Chem. Int. Ed. 59, 12636–12652 (2020). https://doi.org/10.1002/anie.201909339

    Article  CAS  Google Scholar 

  11. P. Sang-Hoon, J.K. Paul, T. Ruiyuan, S.B. Conor, C. João, J.Z. Chuanfang, M. Patrick, M. Niall, P.K. Matthias, D. Dermot, N.C. Jonathan, N. Valeria, Nat. Energy 4, 1 (2019)

    Article  Google Scholar 

  12. Y. Kuang, C. Chen, D. Kirsch, L. Hu, Adv. Energy Mater. 9, 1901457 (2019). https://doi.org/10.1002/aenm.201901457

    Article  CAS  Google Scholar 

  13. X. Zhang, Z. Ju, Y. Zhu, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, G. Yu, Adv. Energy Mater. 11, 2000808 (2021). https://doi.org/10.1002/aenm.202000808

    Article  CAS  Google Scholar 

  14. A. Manthiram, Y. Fu, S. Chung, C. Zu, Y. Su, Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v

    Article  CAS  PubMed  Google Scholar 

  15. R. Fang, S. Zhao, Z. Sun, D. Wang, H. Cheng, F. Li, Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823

    Article  CAS  Google Scholar 

  16. G. Zheng, Q. Zhang, J.J. Cha, Y. Yang, W. Li, Z.W. Seh, Y. Cui, Nano Lett. 13, 1265–1270 (2013). https://doi.org/10.1021/nl304795g

    Article  CAS  PubMed  Google Scholar 

  17. E.C. Sang, S.K. Ki, H.C. Ji, W.K. Sun, Y.C. Eog, T.K.J. Hee, Electrochem. Soc. 150, 1 (2003)

    Google Scholar 

  18. K.H. Wujcik, D.R. Wang, A. Raghunathan, M. Drake, T.A. Pascal, D. Prendergast, N.P. Balsara, J. Phys. Chem. C 120, 18403–18410 (2016). https://doi.org/10.1021/acs.jpcc.6b04264

    Article  CAS  Google Scholar 

  19. L. Zhu, W. Zhu, X. Cheng, J. Huang, H. Peng, S. Yang, Q. Zhang, Carbon 75, 161–168 (2014). https://doi.org/10.1016/j.carbon.2014.03.049

    Article  CAS  Google Scholar 

  20. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

    Article  CAS  PubMed  Google Scholar 

  21. N. Wang, X. Zhang, Z. Ju, X. Yu, Y. Wang, Y. Du, Z. Bai, S. Dou, G. Yu, Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-24873-4

    Article  PubMed  PubMed Central  Google Scholar 

  22. S. Chung, C. Chang, A. Manthiram, ACS Nano 10, 10462–10470 (2016). https://doi.org/10.1021/acsnano.6b06369

    Article  CAS  PubMed  Google Scholar 

  23. X. Yang, H. Zhang, Y. Chen, Y. Yu, X. Li, H. Zhang, Nano Energy 39, 418–428 (2017). https://doi.org/10.1016/j.nanoen.2017.07.028

    Article  CAS  Google Scholar 

  24. X. Yang, Y. Chen, M. Wang, H. Zhang, X. Li, H. Zhang, Adv. Funct. Mater. 26, 8427–8434 (2016). https://doi.org/10.1002/adfm.201604229

    Article  CAS  Google Scholar 

  25. G. Hu, C. Xu, Z. Sun, S. Wang, H. Cheng, F. Li, W. Ren, Adv. Mater. 28, 1603–1609 (2016). https://doi.org/10.1002/adma.201504765

    Article  CAS  PubMed  Google Scholar 

  26. J. Lee, D.A. Kitchaev, D. Kwon, C. Lee, J.K. Papp, Y. Liu, Z. Lun, R.J. Clément, T. Shi, B.D. McCloskey, J. Guo, M. Balasubramanian, G. Ceder, Nature 556, 185–190 (2018). https://doi.org/10.1038/s41586-018-0015-4

    Article  CAS  PubMed  Google Scholar 

  27. L. Qie, A. Manthiram, Adv. Mater. 27, 1694–1700 (2015). https://doi.org/10.1002/adma.201405689

    Article  CAS  PubMed  Google Scholar 

  28. S. Chung, A. Manthiram, Joule 2, 710–724 (2018). https://doi.org/10.1016/j.joule.2018.01.002

    Article  CAS  Google Scholar 

  29. J. Gou, H. Zhang, X. Yang, Y. Chen, Y. Yu, X. Li, H. Zhang, Adv. Funct. Mater. 28, 1707272 (2018). https://doi.org/10.1002/adfm.201707272

    Article  CAS  Google Scholar 

  30. H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852

    Article  CAS  PubMed  Google Scholar 

  31. X. Gao, X. Yang, Q. Sun, J. Luo, J. Liang, W. Li, J. Wang, S. Wang, M. Li, R. Li, T. Sham, X. Sun, Energy Storage Mater. 24, 682–688 (2020). https://doi.org/10.1016/j.ensm.2019.08.001

    Article  Google Scholar 

  32. D. Lv, J. Zheng, Q. Li, X. Xie, S. Ferrara, Z. Nie, L.B. Mehdi, N.D. Browning, J. Zhang, G.L. Graff, J. Liu, J. Xiao, Adv. Energy Mater. 5, 1402290 (2015). https://doi.org/10.1002/aenm.201402290

    Article  CAS  Google Scholar 

  33. H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, ChemInform (1988). https://doi.org/10.1002/chin.198833024

    Article  Google Scholar 

  34. E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, J. Electrochem. Soc. 136, 1621–1625 (1989). https://doi.org/10.1149/1.2096981

    Article  CAS  Google Scholar 

  35. B. Jin, J. Kim, H. Gu, J. Power Sour. 117, 148–152 (2003). https://doi.org/10.1016/S0378-7753(03)00113-7

    Article  CAS  Google Scholar 

  36. Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Nat. Nanotechnol. 14(3), 200–207 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. B. Amruth, H. Jiarui, G. Abhay, M. Arumugam, Joule 4(2), 285–291 (2020)

    Article  Google Scholar 

  38. J. Liang, Z. Sun, F. Li, H. Cheng, Energy Storage Mater. 2, 76–106 (2016). https://doi.org/10.1016/j.ensm.2015.09.007

    Article  Google Scholar 

  39. H. Wang, C. Zhang, Z. Chen, H.K. Liu, Z. Guo, Carbon 81, 782–787 (2015). https://doi.org/10.1016/j.carbon.2014.10.024

    Article  CAS  Google Scholar 

  40. X. Liang, A. Garsuch, L.F. Nazar, Angew. Chem. 127, 3979–3983 (2015). https://doi.org/10.1002/ange.201410174

    Article  Google Scholar 

  41. Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. (2014). https://doi.org/10.1038/ncomms5759

    Article  PubMed  Google Scholar 

  42. Z. Liang, G. Zheng, W. Li, Z.W. Seh, H. Yao, K. Yan, D. Kong, Y. Cui, ACS Nano 8, 5249–5256 (2014). https://doi.org/10.1021/nn501308m

    Article  CAS  PubMed  Google Scholar 

  43. Z. Li, J. Zhang, X.W.D. Lou, Angew. Chem. 127, 13078–13082 (2015). https://doi.org/10.1002/ange.201506972

    Article  Google Scholar 

  44. S.S. Zhang, D.T. Tran, Electrochim. Acta 114, 296–302 (2013). https://doi.org/10.1016/j.electacta.2013.10.069

    Article  CAS  Google Scholar 

  45. W. Weng, V.G. Pol, K. Amine, Adv. Mater. 25, 1608–1615 (2013). https://doi.org/10.1002/adma.201204051

    Article  CAS  PubMed  Google Scholar 

  46. N. Azimi, W. Weng, C. Takoudis, Z. Zhang, Electrochem. Commun. 37, 96–99 (2013). https://doi.org/10.1016/j.elecom.2013.10.020

    Article  CAS  Google Scholar 

  47. R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Adv. Mater. 23, 5641–5644 (2011). https://doi.org/10.1002/adma.201103274

    Article  CAS  PubMed  Google Scholar 

  48. X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  Google Scholar 

  49. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, J. Liu, Adv. Mater. 24, 1176–1181 (2012). https://doi.org/10.1002/adma.201103392

    Article  CAS  PubMed  Google Scholar 

  50. J. Wang, Y. He, J. Yang, Adv. Mater. 27, 569–575 (2015). https://doi.org/10.1002/adma.201402569

    Article  CAS  PubMed  Google Scholar 

  51. K. Park, J.H. Cho, J. Jang, B. Yu, A.T. De La Hoz, K.M. Miller, C.J. Ellison, J.B. Goodenough, Energy Environ. Sci. 8, 2389–2395 (2015). https://doi.org/10.1039/C5EE01809A

    Article  CAS  Google Scholar 

  52. C. Zhang, H.B. Wu, C. Yuan, Z. Guo, X.W.D. Lou, Angew. Chem. 124, 9730–9733 (2012). https://doi.org/10.1002/ange.201205292

    Article  Google Scholar 

  53. N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Angew. Chem. Int. Ed. 50, 5904–5908 (2011). https://doi.org/10.1002/anie.201100637

    Article  CAS  Google Scholar 

  54. J. Guo, Y. Xu, C. Wang, Nano Lett. 11, 4288–4294 (2011). https://doi.org/10.1021/nl202297p

    Article  CAS  PubMed  Google Scholar 

  55. H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W.D. Lou, Chemistry 19(33), 10804–10808 (2013). https://doi.org/10.1002/chem.201301689

    Article  CAS  PubMed  Google Scholar 

  56. S. Zheng, Y. Chen, Y. Xu, F. Yi, Y. Zhu, Y. Liu, J. Yang, C. Wang, ACS Nano 7, 10995–11003 (2013). https://doi.org/10.1021/nn404601h

    Article  CAS  PubMed  Google Scholar 

  57. M. Park, B.O. Jeong, T.J. Kim, S. Kim, K.J. Kim, J. Yu, Y. Jung, Y. Kim, Carbon 68, 265–272 (2014). https://doi.org/10.1016/j.carbon.2013.11.001

    Article  CAS  Google Scholar 

  58. N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao, Y. Shi, Chem. Commun. 48, 4106–4108 (2012). https://doi.org/10.1039/C2CC17912A

    Article  CAS  Google Scholar 

  59. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang, J. Am. Chem. Soc. 133, 18522–18525 (2011). https://doi.org/10.1021/ja206955k

    Article  CAS  PubMed  Google Scholar 

  60. J. Wang, L. Lu, M. Choucair, J.A. Stride, X. Xu, H. Liu, J. Power Sour. 196, 7030–7034 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.106

    Article  CAS  Google Scholar 

  61. G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Nano Lett. 11, 4462–4467 (2011). https://doi.org/10.1021/nl2027684

    Article  CAS  PubMed  Google Scholar 

  62. S. Seo, D. Park, S. Park, D. Kim, Adv. Funct. Mater. 29, 1903712 (2019). https://doi.org/10.1002/adfm.201903712

    Article  CAS  Google Scholar 

  63. J. Jiang, J. Zhu, W. Ai, X. Wang, Y. Wang, C. Zou, W. Huang, T. Yu, Nat. Commun. 6, 8622 (2015). https://doi.org/10.1038/ncomms9622

    Article  CAS  PubMed  Google Scholar 

  64. X. Fan, Y. Zhang, J. Li, K. Yang, Z. Liang, Y. Chen, C. Zhao, Z. Zhang, K. Mai, J. Mater. Chem. A 6(25), 11664–11669 (2018)

    Article  CAS  Google Scholar 

  65. R. Fang, C. Liang, Y. Xia, Z. Xiao, H. Huang, Y. Gan, J. Zhang, X. Tao, W. Zhang, J. Mater. Chem. A 6(1), 212–222 (2018)

    Article  CAS  Google Scholar 

  66. J. Chang, J. Shang, Y. Sun, L.K. Ono, D. Wang, Z. Ma, Q. Huang, D. Chen, G. Liu, Y. Cui, Y. Qi, Z. Zheng, Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-06879-7

    Article  PubMed  PubMed Central  Google Scholar 

  67. S. Niu, W. Lv, G. Zhou, H. Shi, X. Qin, C. Zheng, T. Zhou, C. Luo, Y. Deng, B. Li, F. Kang, Q. Yang, Nano Energy 30, 138–145 (2016). https://doi.org/10.1016/j.nanoen.2016.09.044

    Article  CAS  Google Scholar 

  68. Y. Xiaofei, L. Xia, A. Keegan, Z. Huamin, S. Xueliang, Electrochem. Energy Rev. 14(2), 643–671 (2018)

    Google Scholar 

  69. H. Peng, J. Huang, Q. Zhang, Chem. Soc. Rev. 46(17), 5237–5288 (2017)

    Article  CAS  PubMed  Google Scholar 

  70. Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 42, 3018–3032 (2013). https://doi.org/10.1039/c2cs35256g

    Article  CAS  PubMed  Google Scholar 

  71. G. Zhou, S. Pei, L. Li, D. Wang, S. Wang, K. Huang, L. Yin, F. Li, H. Cheng, Adv. Mater. 26, 625–631 (2014). https://doi.org/10.1002/adma.201302877

    Article  CAS  PubMed  Google Scholar 

  72. M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Energy Environ. Sci. 8, 3477–3494 (2015). https://doi.org/10.1039/C5EE01388G

    Article  CAS  Google Scholar 

  73. D. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H. Cheng, I.R. Gentle, G.Q.M. Lu, J. Mater. Chem. 1, 9382 (2013). https://doi.org/10.1039/c3ta11045a

    Article  CAS  Google Scholar 

  74. M. Li, J. Lu, K. Amine, ACS Nano 15, 8087–8094 (2021). https://doi.org/10.1021/acsnano.1c01999

    Article  CAS  PubMed  Google Scholar 

  75. D.H. Yang, H.Y. Zhou, H. Liu, B.H. Han, iScience 13, 243–253 (2019). https://doi.org/10.1016/j.isci.2019.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. K. Zou, W. Jing, X. Dai, X. Chen, M. Shi, Z. Yao, T. Zhu, J. Sun, Y. Chen, Y. Liu, Y. Liu, Small 18, 2107380 (2022). https://doi.org/10.1002/smll.202107380

    Article  CAS  Google Scholar 

  77. S. Choudhury, T. Ebert, T. Windberg, A. Seifert, M. Göbel, F. Simon, P. Formanek, M. Stamm, S. Spange, L. Ionov, Part. Part. Syst. Charact. 35, 1800364 (2018). https://doi.org/10.1002/ppsc.201800364

    Article  CAS  Google Scholar 

  78. Z. Han, S. Li, R. Xiong, Z. Jiang, M. Sun, W. Hu, L. Peng, R. He, H. Zhou, C. Yu, S. Cheng, J. Xie, Adv. Funct. Mater. 32(12), 2108669 (2021). https://doi.org/10.1002/adfm.202108669

    Article  CAS  Google Scholar 

  79. J. Ma, Y. Qiao, M. Huang, H. Shang, H. Zhou, T. Li, W. Liu, M. Qu, H. Zhang, G. Peng, Appl. Surf. Sci. 542, 148664 (2021). https://doi.org/10.1016/j.apsusc.2020.148664

    Article  CAS  Google Scholar 

  80. T. Wang, Q. Zhang, J. Zhong, M. Chen, H. Deng, J. Cao, L. Wang, L. Peng, J. Zhu, B. Lu, Adv. Energy Mater. 11, 2100448 (2021). https://doi.org/10.1002/aenm.202100448

    Article  CAS  Google Scholar 

  81. Y. Ma, H. Zhang, B. Wu, M. Wang, X. Li, H. Zhang, Sci. Rep. (2015). https://doi.org/10.1038/srep14949

    Article  PubMed  PubMed Central  Google Scholar 

  82. H. Kang, T. Lee, H. Kim, J. Park, H.J. Hwang, H. Hwang, K. Jang, H.J. Kim, Y.S. Huh, W.B. Im, Y. Jun, Carbon Energy 3, 410–423 (2021). https://doi.org/10.1002/cey2.116

    Article  CAS  Google Scholar 

  83. H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 11, 2644–2647 (2011). https://doi.org/10.1021/nl200658a

    Article  CAS  PubMed  Google Scholar 

  84. X. Zhang, B. He, W. Li, A. Lu, Nano Res. 11, 1238–1246 (2018). https://doi.org/10.1007/s12274-017-1737-6

    Article  CAS  Google Scholar 

  85. Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Adv. Mater. 26, 5113–5118 (2014). https://doi.org/10.1002/adma.201401191

    Article  CAS  PubMed  Google Scholar 

  86. J. Jin, Z. Wen, G. Ma, Y. Lu, Y. Cui, M. Wu, X. Liang, X. Wu, RSC Adv. 3, 2558–2560 (2013). https://doi.org/10.1039/c2ra22808d

    Article  CAS  Google Scholar 

  87. B. Wang, K. Li, D. Su, H. Ahn, G. Wang, Chemistry 7, 1637–1643 (2012). https://doi.org/10.1002/asia.201200004

    Article  CAS  Google Scholar 

  88. M. Park, J. Yu, K.J. Kim, G. Jeong, J. Kim, Y. Jo, U. Hwang, S. Kang, T. Woo, Y. Kim, Phys. Chem. Chem. Phys. 14, 6796–6804 (2012). https://doi.org/10.1039/C2CP40727B

    Article  CAS  PubMed  Google Scholar 

  89. S. Hui, X. Gui-Liang, X. Yue-Feng, S. Shi-Gang, Z. Xinfeng, Q. Yongcai, Y. Shihe, Nano Res. 5(10), 726–738 (2012)

    Article  Google Scholar 

  90. J. Guo, J. Zhang, F. Jiang, S. Zhao, Q. Su, G. Du, Electrochim. Acta 176, 853–860 (2015). https://doi.org/10.1016/j.electacta.2015.07.077

    Article  CAS  Google Scholar 

  91. S. Dörfler, M. Hagen, H. Althues, J. Tübke, S. Kaskel, M.J. Hoffmann, Chem. Commun. 48, 4097–4099 (2012). https://doi.org/10.1039/C2CC17925C

    Article  Google Scholar 

  92. X. Wang, X. Fang, X. Guo, Z. Wang, L. Chen, Electrochim. Acta 97, 238–243 (2013). https://doi.org/10.1016/j.electacta.2013.02.126

    Article  CAS  Google Scholar 

  93. Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu, J. Li, J. Mater. Chem. 1, 14306 (2013). https://doi.org/10.1039/c3ta13306k

    Article  CAS  Google Scholar 

  94. J. Zang, T. An, Y. Dong, X. Fang, M. Zheng, Q. Dong, N. Zheng, Nano Res. 8, 2663–2675 (2015). https://doi.org/10.1007/s12274-015-0773-3

    Article  CAS  Google Scholar 

  95. Z. Yu, M. Liu, D. Guo, J. Wang, X. Chen, J. Li, H. Jin, Z. Yang, X. Chen, S. Wang, Angew. Chem. Int. Ed. 59, 6406–6411 (2020). https://doi.org/10.1002/anie.201914972

    Article  CAS  Google Scholar 

  96. P. Podsiadlo, A.K. Kaushik, E.M. Arruda, A.M. Waas, B.S. Shim, J. Xu, H. Nandivada, B.G. Pumplin, J. Lahann, A. Ramamoorthy, N.A. Kotov, Science 318, 80–83 (2007). https://doi.org/10.1126/science.1143176

    Article  CAS  PubMed  Google Scholar 

  97. Z.Y. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nat. Mater. 2, 413–418 (2003). https://doi.org/10.1038/nmat906

    Article  CAS  PubMed  Google Scholar 

  98. Q. Cheng, M. Wu, M. Li, L. Jiang, Z. Tang, Angew. Chem. Int. Edit. 52, 3750–3755 (2013). https://doi.org/10.1002/anie.201210166

    Article  CAS  Google Scholar 

  99. H. Yao, H. Fang, Z. Tan, L. Wu, S. Yu, Angew. Chem. Int. Edit. 49, 2140–2145 (2010). https://doi.org/10.1002/anie.200906920

    Article  CAS  Google Scholar 

  100. H. Yao, Z. Tan, H. Fang, S. Yu, Angew. Chem. Int. Edit. 49, 10127–10131 (2010). https://doi.org/10.1002/anie.201004748

    Article  CAS  Google Scholar 

  101. W. Cui, M. Li, J. Liu, B. Wang, C. Zhang, L. Jiang, Q. Cheng, ACS Nano 8, 9511–9517 (2014). https://doi.org/10.1021/nn503755c

    Article  CAS  PubMed  Google Scholar 

  102. A. Chavez-Valdez, M.S.P. Shaffer, A.R. Boccaccini, J. Phys. Chem. B 117, 1502–1515 (2013). https://doi.org/10.1021/jp3064917

    Article  CAS  PubMed  Google Scholar 

  103. Z. Xiong, C. Liao, W. Han, X. Wang, Adv. Mater. 27, 4469–4475 (2015). https://doi.org/10.1002/adma.201501983

    Article  CAS  PubMed  Google Scholar 

  104. M. Zhang, Y. Wang, L. Huang, Z. Xu, C. Li, G. Shi, Adv. Mater. 27, 6708 (2015). https://doi.org/10.1002/adma.201503045

    Article  CAS  PubMed  Google Scholar 

  105. M. Zhang, L. Huang, J. Chen, C. Li, G. Shi, Adv. Mater. 26, 7588–7592 (2014). https://doi.org/10.1002/adma.201403322

    Article  CAS  PubMed  Google Scholar 

  106. A. Walther, I. Bjurhager, J. Malho, J. Pere, J. Ruokolainen, L.A. Berglund, O. Ikkala, Nano Lett. 10, 2742–2748 (2010). https://doi.org/10.1021/nl1003224

    Article  CAS  PubMed  Google Scholar 

  107. A. Walther, I. Bjurhager, J. Malho, J. Ruokolainen, L. Berglund, O. Ikkala, Angew. Chem. Int. Ed. 49, 6448–6453 (2010). https://doi.org/10.1002/anie.201001577

    Article  CAS  Google Scholar 

  108. H. Le Ferrand, F. Bouville, T.P. Niebel, A.R. Studart, Nat. Mater. 16, 1272–1273 (2017). https://doi.org/10.1038/nmat4983

    Article  CAS  PubMed  Google Scholar 

  109. I. Corni, T.J. Harvey, J.A. Wharton, K.R. Stokes, F.C. Walsh, R.J.K. Wood, Bioinspir. Biomim. 7(3), 031001 (2012). https://doi.org/10.1088/1748-3182/7/3/031001

    Article  CAS  PubMed  Google Scholar 

  110. T. Moran, Proceedings of the royal society of London series a-containing papers of a mathematical and physical character 112, 30–46 (1926). https://doi.org/10.1098/rspa.1926.0092

    Article  CAS  Google Scholar 

  111. S. Deville, Adv. Eng. Mater. 10, 155–169 (2008). https://doi.org/10.1002/adem.200700270

    Article  CAS  Google Scholar 

  112. Y. Yu, H. Zhang, X. Yang, J. Gou, X. Tong, X. Li, H. Zhang, Energy Storage Mater. 19, 88–93 (2019). https://doi.org/10.1016/j.ensm.2018.09.016

    Article  Google Scholar 

  113. J. Wang, Q. Sun, X. Gao, C. Wang, W. Li, F.B. Holness, M. Zheng, R. Li, A.D. Price, X. Sun, T. Sham, X. Sun, A.C.S. Appl, Mater. Inter. 10(46), 39794–39801 (2018)

    Article  CAS  Google Scholar 

  114. X. Gao, Q. Sun, X. Yang, J. Liang, A. Koo, W. Li, J. Liang, J. Wang, R. Li, F.B. Holness, A.D. Price, S. Yang, T. Sham, X. Sun, Nano Energy 56, 595–603 (2019). https://doi.org/10.1016/j.nanoen.2018.12.001

    Article  CAS  Google Scholar 

  115. J. Wang, H. Yang, Z. Chen, L. Zhang, J. Liu, P. Liang, H. Yang, X. Shen, Z.X. Shen, Adv. Sci. 5, 1800621 (2018). https://doi.org/10.1002/advs.201800621

    Article  CAS  Google Scholar 

  116. Y. Xia, T.S. Mathis, M. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 557, 409–412 (2018). https://doi.org/10.1038/s41586-018-0109-z

    Article  CAS  PubMed  Google Scholar 

  117. F. Xia-Lu, P. Lin-Quan, Q. Fu-Lai, A.G. Zahid, T. Xiao-Nan, F. Ruo-Pian, S. Zhen-Hua, C. Hui-Ming, L. Chang, L. Feng, Carbon 154, 1 (2019)

    Article  Google Scholar 

  118. Z. Bo, S. Mao, Z. Jun Han, K. Cen, J. Chen, K.K. Ostrikov, Chem. Soc. Rev. 44(8), 2108–2121 (2015). https://doi.org/10.1039/C4CS00352G

    Article  CAS  PubMed  Google Scholar 

  119. R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H. Cheng, Adv. Mater. 31, 1800863 (2019). https://doi.org/10.1002/adma.201800863

    Article  CAS  Google Scholar 

  120. S.Z. Sheng, A.R. Jeffrey, J. Power Sour. 200, 77–82 (2011)

    Google Scholar 

  121. J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv, Y. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 24, 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631

    Article  CAS  Google Scholar 

  122. J. Kim, T.H. Hwang, B.G. Kim, J. Min, J.W. Choi, Adv. Funct. Mater. 24, 5359–5367 (2014). https://doi.org/10.1002/adfm.201400935

    Article  CAS  Google Scholar 

  123. H. M., D. S., F. P., B. T., S. R., T. J., A. H., J.H. M., S. C., K. S., J. Power Sources, 224 (2013).

  124. Z. Yuan, H. Peng, J. Huang, X. Liu, D. Wang, X. Cheng, Q. Zhang, Adv. Funct. Mater. 24, 6105–6112 (2014). https://doi.org/10.1002/adfm.201401501

    Article  CAS  Google Scholar 

  125. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. Zhang, Energy Environ. Sci. 7, 513–537 (2014). https://doi.org/10.1039/C3EE40795K

    Article  CAS  Google Scholar 

  126. S.Y. Chew, S.H. Ng, J. Wang, P. Novák, F. Krumeich, S.L. Chou, J. Chen, H.K. Liu, Carbon 47, 2976–2983 (2009). https://doi.org/10.1016/j.carbon.2009.06.045

    Article  CAS  Google Scholar 

  127. X. Li, J. Yang, Y. Hu, J. Wang, Y. Li, M. Cai, R. Li, X. Sun, J. Mater. Chem. 22, 18847–18853 (2012). https://doi.org/10.1039/C2JM33297C

    Article  CAS  Google Scholar 

  128. J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee, T. Bein, L.F. Nazar, Angew. Chem. Int. Ed. 51, 3591–3595 (2012). https://doi.org/10.1002/anie.201107817

    Article  CAS  Google Scholar 

  129. J. Huang, P. Zhai, H. Peng, W. Zhu, Q. Zhang, Sci. Bull. 62, 1267–1274 (2017). https://doi.org/10.1016/j.scib.2017.09.007

    Article  CAS  Google Scholar 

  130. Y. Liu, M. Yao, L. Zhang, Z. Niu, J. Energy Chem. 38, 199–206 (2019). https://doi.org/10.1016/j.jechem.2019.03.034

    Article  Google Scholar 

  131. J. Ren, Y. Zhou, H. Wu, F. Xie, C. Xu, D. Lin, J. Energy Chem. 30, 121–131 (2019). https://doi.org/10.1016/j.jechem.2018.01.015

    Article  Google Scholar 

  132. Y. Cao, X. Li, I.A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Phys. Chem. Chem. Phys. 13, 7660–7665 (2011). https://doi.org/10.1039/C0CP02477E

    Article  CAS  PubMed  Google Scholar 

  133. S. Evers, L.F. Nazar, Chem. Commun. 48, 1233–1235 (2012). https://doi.org/10.1039/C2CC16726C

    Article  CAS  Google Scholar 

  134. Y. Wang, L. Huang, L. Sun, S. Xie, G. Xu, S. Chen, Y. Xu, J. Li, S. Chou, S. Dou, S. Sun, J. Mater. Chem. 22, 4744–4750 (2012). https://doi.org/10.1039/C2JM15041G

    Article  CAS  Google Scholar 

  135. M. Rao, X. Song, H. Liao, E.J. Cairns, Electrochim. Acta 65, 228–233 (2012). https://doi.org/10.1016/j.electacta.2012.01.051

    Article  CAS  Google Scholar 

  136. X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao, T. Liu, Adv. Funct. Mater. 29, 1902929 (2019). https://doi.org/10.1002/adfm.201902929

    Article  CAS  Google Scholar 

  137. J. Zhou, T. Qian, N. Xu, M. Wang, X. Ni, X. Liu, X. Shen, C. Yan, Adv. Mater. 29, 1701294 (2017). https://doi.org/10.1002/adma.201701294

    Article  CAS  Google Scholar 

  138. S. Xin, L. Gu, N. Zhao, Y. Yin, L. Zhou, Y. Guo, L. Wan, J. Am. Chem. Soc. 134, 18510–18513 (2012). https://doi.org/10.1021/ja308170k

    Article  CAS  PubMed  Google Scholar 

  139. J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Adv. Funct. Mater. 13, 487–492 (2003). https://doi.org/10.1002/adfm.200304284

    Article  CAS  Google Scholar 

  140. Z. Zhang, J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H. Cheng, W. Ren, Nat. Commun. 8, 14560 (2017). https://doi.org/10.1038/ncomms14560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. P. Hu, H. Wang, Y. Yang, J. Yang, J. Lin, L. Guo, Adv. Mater. 28, 3486–3492 (2016). https://doi.org/10.1002/adma.201505917

    Article  CAS  PubMed  Google Scholar 

  142. S. Wang, L. Wang, K. Zhang, Z. Zhu, Z. Tao, J. Chen, Nano Lett. 13, 4404–4409 (2013). https://doi.org/10.1021/nl402239p

    Article  CAS  PubMed  Google Scholar 

  143. Z. Song, Y. Qian, M.L. Gordin, D. Tang, T. Xu, M. Otani, H. Zhan, H. Zhou, D. Wang, Angew. Chem. 127, 14153–14157 (2015). https://doi.org/10.1002/ange.201506673

    Article  Google Scholar 

  144. F. Sun, H. Cheng, J. Chen, N. Zheng, Y. Li, J. Shi, ACS Nano 10, 8289–8298 (2016). https://doi.org/10.1021/acsnano.6b02315

    Article  CAS  PubMed  Google Scholar 

  145. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828–4850 (2011). https://doi.org/10.1002/adma.201100984

    Article  CAS  PubMed  Google Scholar 

  146. K. Haegyeom, L. Hee-Dae, K. Jinsoo, K. Kisuk, J. Mater. Chem. A 2(1), 33–47 (2014)

    Article  Google Scholar 

  147. M. Yu, R. Li, M. Wu, G. Shi, Energy Storage Mater. 1, 51–73 (2015). https://doi.org/10.1016/j.ensm.2015.08.004

    Article  Google Scholar 

  148. H. Chen, G. Zhou, D. Boyle, J. Wan, H. Wang, D. Lin, D. Mackanic, Z. Zhang, S.C. Kim, H.R. Lee, H. Wang, W. Huang, Y. Ye, Y. Cui, Matter 2, 1605–1620 (2020). https://doi.org/10.1016/j.matt.2020.04.011

    Article  Google Scholar 

  149. M. Klose, K. Pinkert, M. Zier, M. Uhlemann, F. Wolke, T. Jaumann, P. Jehnichen, D. Wadewitz, S. Oswald, J. Eckert, L. Giebeler, Carbon 79, 302–309 (2014). https://doi.org/10.1016/j.carbon.2014.07.071

    Article  CAS  Google Scholar 

  150. S. Liu, K. Xie, Z. Chen, Y. Li, X. Hong, J. Xu, L. Zhou, J. Yuan, C. Zheng, J. Mater. Chem. A 3, 11395–11402 (2015). https://doi.org/10.1039/c5ta00897b

    Article  CAS  Google Scholar 

  151. S. Liu, X. Hong, D. Wang, Y. Li, J. Xu, C. Zheng, K. Xie, Electrochim. Acta 279, 10–18 (2018). https://doi.org/10.1016/j.electacta.2018.05.029

    Article  CAS  Google Scholar 

  152. X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Chem. Rev. 116, 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731

    Article  CAS  PubMed  Google Scholar 

  153. Z. Li, H.B. Wu, X.W. David Lou, Energy Environ. Sci. 9, 3061–3070 (2016). https://doi.org/10.1039/C6EE02364A

    Article  CAS  Google Scholar 

  154. A. Fu, C. Wang, F. Pei, J. Cui, X. Fang, N. Zheng, Small (2019). https://doi.org/10.1002/smll.201804786

    Article  PubMed  PubMed Central  Google Scholar 

  155. D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  CAS  PubMed  Google Scholar 

  156. G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Nat. Commun. (2016). https://doi.org/10.1038/ncomms10601

    Article  PubMed  PubMed Central  Google Scholar 

  157. D.S. Jung, T.H. Hwang, J.H. Lee, H.Y. Koo, R.A. Shakoor, R. Kahraman, Y.N. Jo, M. Park, J.W. Choi, Nano Lett. 14, 4418–4425 (2014). https://doi.org/10.1021/nl501383g

    Article  CAS  PubMed  Google Scholar 

  158. L. Tao, Z. Liuyang, C. Bei, Y. Jiaguo, Adv. Energy Mater. 9, 1803900 (2019)

    Article  Google Scholar 

  159. C. Shuangqiang, H. Xiaodan, S. Bing, Z. Jinqiang, L. Hao, W. Guoxiu, J. Mater. Chem. A 2, 16199–16207 (2014)

    Article  Google Scholar 

  160. Z. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu, Y. Liu, P. Strasser, Y. Huang, ACS Nano 8, 9295–9303 (2014). https://doi.org/10.1021/nn503220h

    Article  CAS  PubMed  Google Scholar 

  161. G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L.F. Nazar, ACS Nano 7, 10920–10930 (2013). https://doi.org/10.1021/nn404439r

    Article  CAS  PubMed  Google Scholar 

  162. W. Zhou, X. Xiao, M. Cai, L. Yang, Nano Lett. 14, 5250–5256 (2014). https://doi.org/10.1021/nl502238b

    Article  CAS  PubMed  Google Scholar 

  163. Y. Yifei, L. Jun, Carbon Energy 1, 8–12 (2019)

    Article  Google Scholar 

  164. G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 5, 1402263 (2015). https://doi.org/10.1002/aenm.201402263

    Article  CAS  Google Scholar 

  165. K. Liao, S. Chen, H. Wei, J. Fan, Q. Xu, Y. Min, J. Mater. Chem. A 6, 23062–23070 (2018). https://doi.org/10.1039/C8TA08361D

    Article  CAS  Google Scholar 

  166. F. Pei, T. An, J. Zang, X. Zhao, X. Fang, M. Zheng, Q. Dong, N. Zheng, Adv. Energy Mater. 6, 1502539 (2016). https://doi.org/10.1002/aenm.201502539

    Article  CAS  Google Scholar 

  167. Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, Adv. Mater. 27, 6021–6028 (2015). https://doi.org/10.1002/adma.201502467

    Article  CAS  PubMed  Google Scholar 

  168. W. Zhou, C. Wang, Q. Zhang, H.D. Abruña, Y. He, J. Wang, S.X. Mao, X. Xiao, Adv. Energy Mater. 5, 1401752 (2015). https://doi.org/10.1002/aenm.201401752

    Article  CAS  Google Scholar 

  169. M. Fang, Z. Chen, Y. Liu, J. Quan, C. Yang, L. Zhu, Q. Xu, Q. Xu, J. Mater. Chem. A 6, 1630–1638 (2018). https://doi.org/10.1039/C7TA08864G

    Article  CAS  Google Scholar 

  170. R. Wang, K. Wang, S. Gao, M. Jiang, M. Zhou, S. Cheng, K. Jiang, Nanoscale 9, 14881–14887 (2017). https://doi.org/10.1039/C7NR04320A

    Article  CAS  PubMed  Google Scholar 

  171. Y. Su, A. Manthiram, Nat. Commun. 3, 1166 (2012). https://doi.org/10.1038/ncomms2163

    Article  PubMed  Google Scholar 

  172. Y. Su, A. Manthiram, Chem. Commun. 48, 8817–8819 (2012). https://doi.org/10.1039/C2CC33945E

    Article  CAS  Google Scholar 

  173. J. Huang, B. Zhang, Z. Xu, S. Abouali, M. Akbari Garakani, J. Huang, J. Kim, J. Power Sour. 285, 43–50 (2015)

    Article  CAS  Google Scholar 

  174. X. Wang, Z. Wang, L. Chen, J. Power Sour. 242, 65–69 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.063

    Article  CAS  Google Scholar 

  175. S. Liu, T. Zhao, X. Tan, L. Guo, J. Wu, X. Kang, H. Wang, L. Sun, W. Chu, Nano Energy 63, 103894 (2019). https://doi.org/10.1016/j.nanoen.2019.103894

    Article  CAS  Google Scholar 

  176. H. Wang, W. Zhang, H. Liu, Z. Guo, Angew. Chem. Int. Ed. 55, 3992–3996 (2016). https://doi.org/10.1002/anie.201511673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No.52172250, 51972306).

Funding

National Natural Science Foundation of China (No. 52172250, 51972306).

Author information

Authors and Affiliations

Authors

Contributions

JL and LL wrote the main manuscript text and prepared Figs. 1–8. JQ, QZ, SZ, QQ and BW proposed revisions to the article. All authors contributed to the study. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Qingsheng Zhao or Bao Wang.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, L., Qi, J. et al. Research progress and potential materials of porous thick electrode with directional structure for lithium-sulfur batteries. J Porous Mater 29, 1727–1746 (2022). https://doi.org/10.1007/s10934-022-01314-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01314-1

Keywords

Navigation