Skip to main content
Log in

Ordered silica matrices supported ionic liquids as highly efficient catalysts for fine chemical synthesis

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Two different ionic liquids (ILs), 1-hexyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium tetrafluoroborate were used to design the mesoporous silica and to prepare a novel catalyst for the synthesis of β-amino alcohols. In this study, a feasible method was utilized for the binding of ionic liquid (IL) with mesoporous assembly, and the strong interaction of each IL with a series of mesoporous silica was confirmed from the various characterization techniques. The structural properties are studied in detail by experimental techniques as well as by DFT calculations. The chosen ILs have different cationic and anionic parts, however, almost similar activity was observed, which is investigated in the present study. This article illustrates how the strong interaction of IL with mesoporous silica culminated in the creation of a robust heterogeneous catalyst. Reusability and structural analysis of spent catalysts are used to analyze the resilience of all prepared catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Welton, Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004). https://doi.org/10.1016/j.ccr.2004.04.015

    Article  CAS  Google Scholar 

  2. J. Durand, E. Teuma, M. Gómez, Ionic liquids as a medium for enantioselective catalysis. C. R. Chim. 10(3), 152–177 (2007). https://doi.org/10.1016/j.crci.2006.11.010

    Article  CAS  Google Scholar 

  3. M. Freemantle, An introduction to ionic liquids. R. Soc. Chem. (2009)

  4. W. Paul, Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. (St. Petersburg) 1800(1914).

  5. H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryoung, Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc. 97(11), 3264–3265 (1975). https://doi.org/10.1021/ja00844a081

    Article  CAS  Google Scholar 

  6. J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 21(3), 1263–1264 (1982). https://doi.org/10.1021/ic00133a078

    Article  CAS  Google Scholar 

  7. N. Karodia, S. Guise, C. Newlands, J.A. Andersen, Clean catalysis with ionic solvents–phosphonium tosylates for hydroformylation. Chem. Commun. 21, 2341–2342 (1998). https://doi.org/10.1039/A805376F

    Article  Google Scholar 

  8. P. Wasserscheid, R. van Hal, A. Bösmann, 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate–an even ‘greener’ ionic liquid. Green. Chem. 4, 400–404 (2002). https://doi.org/10.1039/B205425F

    Article  CAS  Google Scholar 

  9. P. Wasserscheid, M. Sesing, W. Korth, Hydrogensulfate and tetrakis(hydrogensulfato)borate ionic liquids: synthesis and catalytic application in highly Brønsted-acidic systems for Friedel-Crafts alkylation. Green. Chem. 4, 134–138 (2002). https://doi.org/10.1039/B109845B

    Article  CAS  Google Scholar 

  10. A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J.H. Davis Jr., R.D. Rogers, Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun. 1, 135–136 (2001). https://doi.org/10.1039/B008041L

    Article  Google Scholar 

  11. T.L. Merrigan, E.D. Bates, S.C. Dorman, J.H. Davis Jr., New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids. Chem. Commun. 20, 2051–2052 (2000). https://doi.org/10.1039/B005418F

    Article  Google Scholar 

  12. C. Hardacre, J.D. Holbrey, S.J. McMath, A highly efficient synthetic procedure for deuteriating imidazoles and imidazolium salts. Chem. Commun. 4, 367–368 (2001). https://doi.org/10.1039/B009097M

    Article  Google Scholar 

  13. P. Wasserscheid, A. Bösmann, C. Bolm, Synthesis and properties of ionic liquids derived from the ‘chiral pool.’ Chem. Commun. 3, 200–201 (2002). https://doi.org/10.1039/B109493A

    Article  Google Scholar 

  14. H.P. Steinrueck, P. Wasserscheid, Ionic liquids in catalysis. Catal. Lett. 145, 380–397 (2015). https://doi.org/10.1007/s10562-014-1435-x

    Article  CAS  Google Scholar 

  15. Y. Chauvin, B. Gilbert, I. Guibard, Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. Chem. Commun. 23, 1715–1716 (1990). https://doi.org/10.1039/C39900001715

    Article  Google Scholar 

  16. R.T. Carlin, J.S. Wilkes, Complexation of Cp2MCl2 in a chloroaluminate molten salt: relevance to homogeneous Ziegler-Natta catalysis. J. Mol. Catal. 63, 125–129 (1990). https://doi.org/10.1016/0304-5102(90)85135-5

    Article  CAS  Google Scholar 

  17. C.M. Gordon, A.J. McLean, Photoelectron transfer from excited-state ruthenium(ii) tris(bipyridyl) to methylviologen in an ionic liquid. Chem. Commun 15, 1395–1396 (2000). https://doi.org/10.1039/B003754K

    Article  Google Scholar 

  18. R.M. Pagni, C.M. Gordon, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn., eds. by W.M. Horspool, F. Lenci (CRC Press, Boca Raton, 2003)

  19. C.L. Hussey, in Chemistry of Nonaqueous Solutions, eds. by G. Mamantov, A.I. Popov (VCH, Weinheim, 1994), pp. 227–276

  20. H. Ohno, ed. Electrochemical Aspects of Ionic Liquids (Wiley, New York, 2005).

  21. J.H. Mazurkiewicz, P.C. Innis, G.G. Wallace, D.R. Macfarlane, M. Forsyth, Conducting polymer electrochemistry in ionic liquids. Synth. Met. 135, 32–32 (2003). https://doi.org/10.1016/S0379-6779(02)00688-4

    Article  CAS  Google Scholar 

  22. C.M. Gordon, J.D. Holbrey, A.R. Kennedy, K.R. Seddon, Ionic liquid crystals: hexafluorophosphate salts. J. Mater. Chem. 8, 2627–2636 (1998). https://doi.org/10.1039/A806169F

    Article  CAS  Google Scholar 

  23. M. Veber, G. Berruyer, Ionic liquid crystals: synthesis and mesomorphic properties of dimeric 2,4,6-triarylpyrylium tetrafluoroborates. Liq. Cryst. 27(5), 671–676 (2000). https://doi.org/10.1080/026782900202534

    Article  CAS  Google Scholar 

  24. P. McNeice, P.C. Marr, A.C. Marr, Basic ionic liquids for catalysis: the road to greater stability. Catal. Sci. Technol. 11, 726–741 (2021). https://doi.org/10.1039/D0CY02274H

    Article  CAS  Google Scholar 

  25. Y. Liu, C. Chen, Y.L. Hu, Efficient and convenient catalytic regioselective synthesis of 2-oxazolidinones from CO2 and aziridines over reusable SBA-15 supported hydroxyacetate-functionalized ionic liquid. J. Porous Mater. 29, 131–142 (2022). https://doi.org/10.1007/s10934-021-01153-6

    Article  CAS  Google Scholar 

  26. J.R. Li, C. Chen, Y.L. Hu, Novel and efficient knoevenagel condensation over mesoporous SBA-15 supported acetate-functionalized basic ionic liquid catalyst. ChemistrySelect 5, 14578–14582 (2020). https://doi.org/10.1002/slct.202004048

    Article  CAS  Google Scholar 

  27. X.B. Liu, Q. Rong, J. Tan, C. Chen, Y.L. Hu, Recent advances in catalytic oxidation of organic sulfides: applications of metal-ionic liquid catalytic systems. Front. Chem. (2021). https://doi.org/10.3389/fchem.2021.798603

    Article  PubMed  PubMed Central  Google Scholar 

  28. Y. Zhang, Q. Jiao, B. Zhen, Q. Wu, H. Li, Transesterification of glycerol trioleate catalyzed by basic ionic liquids immobilized on magnetic nanoparticles: influence of pore diffusion effect. Appl. Catal. A Gen. 453, 327–333 (2013). https://doi.org/10.1016/j.apcata.2012.12.029

    Article  CAS  Google Scholar 

  29. W. Xie, L. Hu, X. Yang, Basic ionic liquid supported on mesoporous SBA-15 silica as an efficient heterogeneous catalyst for biodiesel production. Ind. Eng. Chem. Res. 54, 1505–1512 (2015). https://doi.org/10.1021/ie5045007

    Article  CAS  Google Scholar 

  30. T. Selvam, A. Machoke, W. Schwieger, Supported ionic liquids on non-porous and porous inorganic materials—a topical review. Appl. Catal. A Gen. 445, 92–101 (2012). https://doi.org/10.1016/j.apcata.2012.08.007

    Article  CAS  Google Scholar 

  31. O.C. Vangeli, G.E. Romanos, K.G. Beltsios, D. Fokas, E.P. Kouvelos, K.L. Stefanopoulos, N.K. Kanellopoulos, Grafting of imidazolium based ionic liquid on the pore surface of nanoporous materials-study of physicochemical and thermodynamic properties. J. Phy. Chem. B 114, 6480–6491 (2010). https://doi.org/10.1021/jp912205y

    Article  CAS  Google Scholar 

  32. D.W. Kim, D.O. Lim, D.H. Cho, J.C. Koh, D.W. Park, Production of dimethyl carbonate from ethylene carbonate and methanol using immobilized ionic liquids on MCM-41. Catal. Today 164, 556–560 (2011). https://doi.org/10.1016/j.cattod.2010.11.010

    Article  CAS  Google Scholar 

  33. S. Udayakumar, Y.S. Son, M.K. Lee, S.W. Park, D.W. Park, The synthesis of chloropropylated MCM-41 through co-condensation technique: the path finding process. Appl. Catal. A Gen. 347, 192–199 (2008). https://doi.org/10.1016/j.apcata.2008.06.009

    Article  CAS  Google Scholar 

  34. Y.S. Son, S.W. Park, D.W. Park, K.J. Oh, S.S. Kim, Absorption of carbon dioxide into glycidyl methacrylate solution containing the triethylamine immobilized ionic liquid on MCM-41 catalyst. Korean J. Chem. Eng. 26, 783–790 (2009). https://doi.org/10.1007/s11814-009-0131-9

    Article  CAS  Google Scholar 

  35. K.S. Hwang, Y.S. Son, S.W. Park, D.W.K. Park, J. Oh, Reaction kinetics between carbon dioxide and glycidyl methacrylate using trihexylamine immobilized ionic liquid on MCM41 catalyst. J. Ind. Eng. Chem. 15, 854–859 (2009). https://doi.org/10.1016/j.jiec.2009.09.012

    Article  CAS  Google Scholar 

  36. M.H. Valkenberg, C. DeCastro, W.F. Hölderich, Immobilisation of chloroaluminate ionic liquids on silica materials. Top. Catal. 14, 139–144 (2000). https://doi.org/10.1023/A:1009023520210

    Article  CAS  Google Scholar 

  37. Y. Yang, C. Deng, Y. Yuan, Characterization and hydroformylation performance of mesoporous MCM-41-supported water-soluble Rh complex dissolved in ionic liquids. J. Catal. 232, 108–116 (2005). https://doi.org/10.1016/j.jcat.2005.02.017

    Article  CAS  Google Scholar 

  38. S.M. Coman, M. Florea, V.I. Parvulescu, V. David, A. Medvedovici, D. De Vos, P. Grange, Metal-triflate ionic liquid systems immobilized onto mesoporous MS41 materials as new and efficient catalysts for N-acylation. J. Catal. 249, 359–369 (2007). https://doi.org/10.1016/j.jcat.2007.04.022

    Article  CAS  Google Scholar 

  39. A.L. Petre, W.F. Hoelderich, M.L. Gorbaty, Dodecylbenzene transformations: dealkylation and disproportionation over immobilized ionic liquid catalysts. Appl. Catal. A Gen. 363, 100–108 (2009). https://doi.org/10.1016/j.apcata.2009.04.047

    Article  CAS  Google Scholar 

  40. L.L. Lou, Y. Dong, K. Yu, S. Jiang, Y. Song, S. Cao, S. Liu, Chiral Ru complex immobilized on mesoporous materials by ionic liquids as heterogeneous catalysts for hydrogenation of aromatic ketones. J. Mol. Catal. A Chem. 333, 20–27 (2010). https://doi.org/10.1016/j.molcata.2010.08.018

    Article  CAS  Google Scholar 

  41. H. Zhao, N. Yu, Y. Ding, R. Tan, C. Liu, D. Yin, H. Qiu, D. Yin, Task-specific basic ionic liquid immobilized on mesoporous silicas: efficient and reusable catalysts for Knoevenagel condensation in aqueous media. Microporous Mesoporous Mater. 136, 10–17 (2010). https://doi.org/10.1016/j.micromeso.2010.07.010

    Article  CAS  Google Scholar 

  42. H. Wang, B. Wang, C.L. Liu, W.S. Dong, Oxidative carbonylation of methanol over copper ion-containing ionic liquids immobilized on SBA-15. Microporous Mesoporous Mater. 134, 51–57 (2010). https://doi.org/10.1016/j.micromeso.2010.05.006

    Article  CAS  Google Scholar 

  43. S. Sahoo, P. Kumar, F. Lefebvre, S.B. Halligudi, Oxidative kinetic resolution of alcohols using chiral Mn–salen complex immobilized onto ionic liquid modified silica. Appl. Catal. A Gen. 354, 17–25 (2009). https://doi.org/10.1016/j.apcata.2008.10.039

    Article  CAS  Google Scholar 

  44. M. Li, P.J. Pham, C.U. Pittman Jr., T. Li, SBA-15-supported ionic liquid compounds containing silver salts: novel mesoporous π-complexing sorbents for separating polyunsaturated fatty acid methyl esters. Microporous Mesoporous Mater. 117, 436–443 (2009). https://doi.org/10.1016/j.micromeso.2008.07.017

    Article  CAS  Google Scholar 

  45. J. Huang, T. Jiang, B. Han, W. Wu, Z. Liu, Z. Xie, J. Zhang, A novel method to immobilize Ru nanoparticles on SBA-15 firmly by ionic liquid and hydrogenation of arene. Catal. Lett. 103, 59–62 (2005). https://doi.org/10.1007/s10562-005-6503-9

    Article  CAS  Google Scholar 

  46. X. Ma, Y. Zhou, J. Zhang, A. Zhu, T. Jiang, B. Han, Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem. 10, 59–66 (2008). https://doi.org/10.1039/B712627A

    Article  CAS  Google Scholar 

  47. G. Liu, M. Hou, T. Wu, T. Jiang, H. Fan, G. Yang, B. Han, Pd(ii) immobilized on mesoporous silica by N-heterocyclic carbeneionic liquids and catalysis for hydrogenation. Phys. Chem. Chem. Phys. 13, 2062–2068 (2011). https://doi.org/10.1039/C0CP01213K

    Article  CAS  PubMed  Google Scholar 

  48. B. Gadenne, P. Hesemann, J.J. Moreau, Supported ionic liquids: ordered mesoporous silicas containing covalently linked ionic species. Chem. Commun. 15, 1768–1769 (2004). https://doi.org/10.1039/B405036C

    Article  Google Scholar 

  49. M. Vafaeezadeh, Z.B. Dizicheh, M.M. Hashemi, Mesoporous silica-functionalized dual Brønsted acidic ionic liquid as an efficient catalyst for thioacetalization of carbonyl compounds in water. Catal. Commun. 41, 96–100 (2013). https://doi.org/10.1016/j.catcom.2013.07.004

    Article  CAS  Google Scholar 

  50. S. Sahoo, P. Kumar, F. Lefebvre, S.B. Halligudi, A chiral Mn(III) salen complex immobilized onto ionic liquid modified mesoporous silica for oxidative kinetic resolution of secondary alcohols. Tetrahedron Lett. 49, 4865–4868 (2008). https://doi.org/10.1016/j.tetlet.2008.06.014

    Article  CAS  Google Scholar 

  51. P. Han, H. Zhang, X. Qiu, X. Ji, L. Gao, Palladium within ionic liquid functionalized mesoporous silica SBA-15 and its catalytic application in room-temperature Suzuki coupling reaction. J. Mol. Catal. A Chem. 295, 57–67 (2008). https://doi.org/10.1016/j.molcata.2008.08.016

    Article  CAS  Google Scholar 

  52. C.J. Carrasco, F. Montilla, L. Bobadilla, S. Ivanova, J.A. Odriozola, A. Galindo, Oxodiperoxomolybdenum complex immobilized onto ionic liquid modified SBA-15 as an effective catalysis for sulfide oxidation to sulfoxides using hydrogen peroxide. Catal. Today 255, 102–108 (2015). https://doi.org/10.1016/j.cattod.2014.10.053

    Article  CAS  Google Scholar 

  53. H.B. Wang, N. Yao, L. Wang, Y.L. Hu, Brønsted-Lewis dual acidic ionic liquid immobilized on mesoporous silica materials as an efficient cooperative catalyst for Mannich reactions. New J. Chem. 41, 10528–10531 (2017). https://doi.org/10.1039/C7NJ02541F

    Article  CAS  Google Scholar 

  54. N. Yao, M. Lu, X.B. Liu, J. Tan, Y.L. Hu, Copper-doped mesoporous silica supported dual acidic ionic liquid as an efficient and cooperative reusability catalyst for Biginelli reaction. J. Mol. Liq. 262, 328–335 (2018). https://doi.org/10.1016/j.molliq.2018.04.121

    Article  CAS  Google Scholar 

  55. Y.L. Hu, H.B. Wang, Z.W. Chen, X.G. Li, Titanium incorporated mesoporous silica immobilized functional ionic liquid as an efficient reusable catalyst for cycloaddition of carbon dioxide to epoxides. ChemistrySelect 3, 5087–5091 (2018). https://doi.org/10.1002/slct.201800984

    Article  CAS  Google Scholar 

  56. E.N. Kusumawati, T. Sasaki, Highly active and stable supported Pd catalysts on ionic liquid-functionalized SBA-15 for Suzuki-Miyaura cross-coupling and transfer hydrogenation reactions. Green Energy Environ. 4, 180–189 (2019). https://doi.org/10.1016/j.gee.2019.02.003

    Article  Google Scholar 

  57. S. Rezayati, E. Salehi, R. Hajinasiri, S.A.S. Abad, Acetic acid functionalized ionic liquid systems: an efficient and recyclable catalyst for the regioselective ring opening of epoxides with NaN3. C. R. Chim. 20, 554–558 (2017). https://doi.org/10.1016/j.crci.2016.07.004

    Article  CAS  Google Scholar 

  58. A.K. Tripathi, R.K. Singh, Immobilization induced molecular compression of ionic liquid in ordered mesoporous matrix. J. Phys. D Appl. Phys. 51, 075301 (2018)

    Article  Google Scholar 

  59. J. Chen, H. Wu, C. Jin, X. Zhang, Y. Xie, W. Su, Highly regioselective ring-opening of epoxides with thiophenols in ionic liquids without the use of any catalyst. Green Chem. 8, 30–332 (2006). https://doi.org/10.1039/B600620E

    Article  Google Scholar 

  60. E.R. Nezhad, S. Sajjadifar, F. Heidarizadeh, S. Karimian, Task specific ionic liquid as solvent, catalyst and reagent for regioselective ring opening of epoxides in water. Arab. J. Chem. 12, 2098–2103 (2019). https://doi.org/10.1016/j.arabjc.2014.12.037

    Article  CAS  Google Scholar 

  61. J.S. Yadav, B.V.S. Reddy, A.K. Basak, A.V. Narsaiah, [Bmim]BF4 ionic liquid: a novel reaction medium for the synthesis of β-amino alcohols. Tetrahedron Lett. 44, 1047–1050 (2003). https://doi.org/10.1016/S0040-4039(02)02735-1

    Article  CAS  Google Scholar 

  62. D. Jadav, P. Shukla, R. Bandyopadhyay, P.J. Sarma, R. Deka, R. Kumar, S. Das, N. Tsunoji, M. Bandyopadhyay, Immobilization of a Zn4 complex on functionalized layered HUS-7: synthesis, structural investigation and catalytic activity. N. J. Chem. 46, 9418–9431 (2022). https://doi.org/10.1039/D2NJ00669C

    Article  CAS  Google Scholar 

  63. M. Pandey, D. Jadav, A. Manhas, S. Kediya, N. Tsunoji, R. Kumar, S. Das, M. Bandyopadhyay, Synthesis and characterization of mononuclear Zn complex, immobilized on ordered mesoporous silica and their tunable catalytic properties. Mol. Catal. 525, 112365 (2022). https://doi.org/10.1016/j.mcat.2022.112365

    Article  CAS  Google Scholar 

  64. R. Prajapati, D. Jadav, M. Pandey, K. Nishimura, S. Inagaki, Y. Kubota, R. Bandyopadhyay, M. Bandyopadhyay, Synthesis of hierarchical silicoaluminophosphate (SAPO) molecular sieves by post-synthetic modification and their catalytic application. Eur. J. Inorg. Chem. e20220018 (2022). https://doi.org/10.1002/ejic.202200185(Published Online)

  65. S.A. Dharaskar, K.L. Wasewar, M.N. Varma, D.Z. Shende, K.K. Tadi, C.K. Yoo, Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel. Fuel Process Technol. 123, 1–10 (2014). https://doi.org/10.1016/j.fuproc.2014.02.001

    Article  CAS  Google Scholar 

  66. X. Bao, F. Zhang, Q. Liu, Sulfonated poly(2,5-benzimidazole) (ABPBI)/ MMT/ionic liquids composite membranes for high temperature PEM applications. Int. J. Hydrog. Energy 40, 16767–16774 (2015). https://doi.org/10.1016/j.ijhydene.2015.07.127

    Article  CAS  Google Scholar 

  67. M. Bandyopadhyay, N. Tsunoji, T. Sano, Mesoporous MCM-48 immobilized with aminopropyltriethoxysilane: a potential catalyst for transesterification of triacetin. Catal. Lett. 147, 1040–1050 (2017). https://doi.org/10.1007/s10562-017-1997-5

    Article  CAS  Google Scholar 

  68. D. Jadav, P. Shukla, R. Bandyopadhyay, Y. Kubota, S. Das, M. Bandyopadhyay, Tetranuclear Zn complex covalently immobilized on sulfopropylsilylated mesoporous silica: an efficient catalyst for ring opening reaction of epoxide with amine. Mol. Catal. 497, 111220 (2020). https://doi.org/10.1016/j.mcat.2020.111220

    Article  CAS  Google Scholar 

  69. R. Dennington, T.A. Keith, J.M. Millam, GaussView 6 (Semichem Inc., Shawnee Mission, 2016)

    Google Scholar 

  70. R. Das, D.K. Pandey, V. Nimma, P. Madhusudhan, P. Bhardwaj, P. Chandravanshi, K.M.M. Shameem, D.K. Singh, R.K. Kushawaha, Strong-field ionization of polyatomic molecules: ultrafast H atom migration and bond formation in the photodissociation of CH3OH. Faraday Discuss. 228, 432–450 (2021). https://doi.org/10.1039/D0FD00129E

    Article  CAS  PubMed  Google Scholar 

  71. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913?ver=pdfcov

    Article  CAS  Google Scholar 

  72. B. Marler, U. Oberhagemann, S. Vortmann, H. Gies, Influence of the sorbate type on the XRD peak intensities of loaded MCM-41. Microporous Mater. 6, 375–383 (1996). https://doi.org/10.1016/0927-6513(96)00016-8

    Article  CAS  Google Scholar 

  73. M. Kuddushi, D.K. Pandey, D.K. Singh, J. Mata, N. Malek, An ionic hydrogel with stimuli-responsive, self-healable and injectable characteristics for the targeted and sustained delivery of doxorubicin in the treatment of breast cancer. Mater. Adv. 3, 632–646 (2022). https://doi.org/10.1039/D1MA00835H

    Article  CAS  Google Scholar 

  74. R. Khorram, H. Raissi, A. Morsali, Assessment of solvent effects on the interaction of Carmustine drug with the pristine and COOH-functionalized single-walled carbon nanotubes: a DFT perspective. J. Mol. Liq. 240, 87–97 (2017). https://doi.org/10.1016/j.molliq.2017.05.035

    Article  CAS  Google Scholar 

  75. M. Shahabi, H. Raissi, Comprehensive theoretical prediction of the dynamics and stability properties of Tegafur pharmaceutical agent on the Graphene based nanostructures in aqueous environment. Appl. Surf. Sci. 455, 32–36 (2018). https://doi.org/10.1016/j.apsusc.2018.05.168

    Article  CAS  Google Scholar 

  76. D.A. McQuarrie, in Statistical Mechanics (AIP Publishing, 1965)

  77. V. Sundararajan, N.K. Farhana, H.M. Ng, S. Ramesh, K. Ramesh, Efficiency enhancement study on addition of 1-hexyl-3-methylimidazolium iodide ionic liquid to the poly(methyl methacrylate-co-methacrylic acid) electrolyte system as applied in dye-sensitized solar cells. J. Phys. Chem. Solids. 129, 252–260 (2019). https://doi.org/10.1016/j.jpcs.2019.01.016

    Article  CAS  Google Scholar 

  78. Y. Jeon, J. Sung, C. Seo, H. Lim, H. Cheong, M. Kang, B. Moon, Y. Ouchi, D. Kim, Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J. Phys. Chem. B. 112, 4735–4740 (2008). https://doi.org/10.1021/jp7120752

    Article  CAS  PubMed  Google Scholar 

  79. D.K. Pandey, P. Sanchora, D. Rana, P. Donfack, A. Materny, D.K. Singh, Impact of water on the hydrogen bonding between halide-based ion-pairs investigated by Raman scattering and density functional theory calculations. J. Raman. Spectrosc. 51, 147–164 (2020). https://doi.org/10.1002/jrs.5755

    Article  CAS  Google Scholar 

  80. J. Saien, M.M.S. Badieh, M. Norouzi, S. Salehzadeh, Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, an efficient solvent for extraction of acetone from aqueous solutions. J. Chem. Thermodyn. 91, 404–413 (2015). https://doi.org/10.1016/j.jct.2015.08.027

    Article  CAS  Google Scholar 

  81. P. Sanchora, D.K. Pandey, H.L. Kagdada, A. Materny, D.K. Singh, Impact of alkyl chain length and water on the structure and properties of 1-alkyl-3-methylimidazolium chloride ionic liquids. Phys. Chem. Chem. Phys. 22, 17687–17704 (2020). https://doi.org/10.1039/D0CP01686A

    Article  CAS  PubMed  Google Scholar 

  82. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, F. Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, D.J. Gaussian 16 Rev. B.01; Wallingford, CT (2016)

  83. P. Sanchora, D.K. Pandey, D. Rana, A. Materny, D.K. Singh, Impact of size and electronegativity of halide anions on hydrogen bonds and properties of 1-ethyl-3-methylimidazolium-based ionic liquids. J. Phys. Chem. A 123, 4948–4963 (2019). https://doi.org/10.1021/acs.jpca.9b04116

    Article  CAS  PubMed  Google Scholar 

  84. D.K. Pandey, H.L. Kagdada, A. Materny, D.K. Singh, Hybrid structure of ionic liquid and TiO2 nanoclusters for efficient hydrogen evolution reaction. J. Phys. Chem. A 125, 2653–2665 (2021). https://doi.org/10.1021/acs.jpca.0c10912

    Article  CAS  PubMed  Google Scholar 

  85. Z. Wang, D. Wang, Z. Zhao, Y. Chen, J. Lan, A DFT study of the structural units in SBA-15 mesoporous molecular sieve. Comput. Theor. Chem. 963, 403–411 (2011). https://doi.org/10.1016/j.comptc.2010.11.004

    Article  CAS  Google Scholar 

  86. K. Noack, P.S. Schulz, N. Paape, J. Kiefer, P. Wasserscheid, A. Leipertz, The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Phys. Chem. Chem. Phys. 12, 14153–14161 (2010). https://doi.org/10.1039/C0CP00486C

    Article  CAS  PubMed  Google Scholar 

  87. M. Bandyopadhyay, D. Jadav, N. Tsunoji, T. Sano, M. Sadakane, Immobilizaion of Preyssler type heteropoly acids on siliceous mesporous supports and their catalytic activities in the dehydration of ethanol. React. Kinet. Mech. Catal. 128, 139–147 (2019). https://doi.org/10.1007/s11144-019-01646-1

    Article  CAS  Google Scholar 

  88. U. Domańska, A. Marciniak, Solubility of ionic liquid [emim][PF6] in alcohols. J. Phys. Chem. B 108, 2376–2382 (2004). https://doi.org/10.1021/jp030582h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DKS acknowledges the Science and Engineering Research Board-Department of Science and Technology (SERB-DST) for Early Career Research (ECR) project “ECR/2016/001289”. DKP acknowledges the Department of Science and Technology (DST, India) for INSPIRE Fellowship (IF170625).

Author information

Authors and Affiliations

Authors

Contributions

DJ and DKP: synthesis, catalysis, writing the original manuscript and contributed equally for this work; TP: synthesis of ionic liquid and writing of this part; DKS: reviewed the manuscript; SD: reviewed the manuscript; RB: SEM and TG analysis; NT and RK: XRD, BET analysis; MB: conceptualization, reviewing, editing, supervision, execution.

Corresponding author

Correspondence to Mahuya Bandyopadhyay.

Ethics declarations

Conflict of interest

There are no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 653 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadav, D., Pandey, D.K., Patil, T. et al. Ordered silica matrices supported ionic liquids as highly efficient catalysts for fine chemical synthesis. J Porous Mater 29, 2003–2017 (2022). https://doi.org/10.1007/s10934-022-01312-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01312-3

Keywords

Navigation