Skip to main content
Log in

The porous composite BN@SHS made of boron nitride, silica hollow spheres and Si–O–B interface

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Calcined silica SiO2 hollow spheres (SHS), with a specific surface area of 523 m2 g−1, were used as porous scaffolds of ammonia borane (AB). AB is used as precursor of boron nitride BN. By capillary effect, AB was infiltrated into the porosity of the SHS, and the as-obtained composite AB@SHS was pyrolyzed. Up to 160 °C, AB transforms into polyborazylene (PB); as a result, the composite PB@SHS was produced. Up to 600 °C, BN forms, and the composite BN@SHS was produced. Both composites are porous, with a specific surface area of 360 and 296 m2 g−1 respectively. Results from MAS NMR and XPS analyses showed that PB@SHS and BN@SHS contain B–O bonds, with more B–O bonds and possibly Si–O–B bonds for the latter. In other words, PB@SHS is made of PB, B–O bonds, and SiO2, while BN@SHS is made of BN, B–O bonds, possibly a Si–O–B interface, and SiO2. Based on first attempts, BN@SHS appeared to have a potential for improving the CO2 adsorption properties of the calcined SHS. Expressed in cm3(CO2) g−1, the CO2 uptakes are 6.7 for BN@SHS and 6.3 for the calcined SHS, at 30 °C under 1.5 bar CO2; but expressed in mm3(CO2) m−2, the respective CO2 uptakes are 22.6 and 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

On demand to UBD.

Code availability

Not applicable.

References

  1. A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay, S. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew. Chem. Int. Ed. 44, 3578 (2005)

    Article  CAS  Google Scholar 

  2. B. Rushton, R. Mokaya, J. Mater. Chem. 18, 235 (2008)

    Article  CAS  Google Scholar 

  3. S.G. Shore, R.W. Parry, J. Am. Chem. Soc. 77, 6084 (1955)

    Article  CAS  Google Scholar 

  4. S. Frueh, R. Kellett, C. Mallery, T. Molter, W.S. Willis, C. King’ondu, S.L. Suib, Inorg. Chem. 50, 783 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. Q. Lai, A. Rawal, M.Z. Quadir, C. Cazorla, U.B. Demirci, K.F. Aguey-Zinsou, Adv. Sustain. Syst. 2, 1700122 (2017)

    Article  Google Scholar 

  6. J.W. Nugent, M. Garcia-Melchor, A.R. Fout, Organometallics 39, 2917 (2020)

    Article  CAS  Google Scholar 

  7. D.W. Himmelberger, L.R. Alden, M.E. Bluhm, L.G. Sneddon, Inorg. Chem. 48, 9883 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. S. De Benedetto, M. Carewska, C. Cento, P. Gislon, M. Pasqualini, S. Scaccia, P.P. Prosini, Thermochim. Acta 441, 184 (2006)

    Article  Google Scholar 

  9. X. Liu, S. Wang, Y. Wu, Z. Li, L. Jiang, X. Guo, J. Ye, Int. J. Hydrogen Energy 45, 2127 (2020)

    Article  CAS  Google Scholar 

  10. A. Rossin, M. Peruzzini, Chem. Rev. 116, 8848 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. K. Wang, Z. Pan, X. Yu, J. Alloys Compd. 794, 303 (2019)

    Article  CAS  Google Scholar 

  12. R. Kumar, A. Karkamkar, M. Bowden, T. Autrey, Chem. Soc. Rev. 48, 5350 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. A.N. Patni, A.S. Mantri, D. Kundu, Int. J. Hydrogen Energy 46, 11761 (2021)

    Article  CAS  Google Scholar 

  14. K. Turani-I-Belloto, C.A. Castilla-Martinez, D. Cot, E. Petit, S. Benarib, U.B. Demirci, Int. J. Hydrogen Energy 46, 7351 (2020)

    Article  Google Scholar 

  15. S.H. So, J.H. Jang, S.J. Sung, S.J. Yang, K.T. Nam, C.R. Park, Nanoscale Adv. 1, 4697 (2019)

    Article  CAS  Google Scholar 

  16. S. Gadipelli, J. Ford, W. Zhou, H. Wu, T.J. Udovic, T. Yildirim, Chem. Eur. J. 17, 6043 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. A.R. Ploszajski, M. Billing, A.S. Nathanson, S. Vickers, S.M. Bennington, Int. J. Hydrogen Energy 43, 5645 (2018)

    Article  CAS  Google Scholar 

  18. A. Paolone, O. Palumbo, P. Rispoli, R. Cantelli, T. Autrey, A. Karkamkar, J. Phys. Chem. C 113, 10319 (2009)

    Article  CAS  Google Scholar 

  19. H. Kim, A. Karkamkar, T. Autrey, P. Chupas, T. Proffen, J. Am. Chem. Soc. 131, 13749 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Zhao, J. Zhang, D.L. Akins, J.W. Lee, Ind. Eng. Chem. Res. 50, 10024 (2011)

    Article  CAS  Google Scholar 

  21. J. Richard, S.L. Cid, J. Rouquette, A. van der Lee, S. Bernard, J. Haines, J. Phys. Chem. C 120, 9334 (2016)

    Article  CAS  Google Scholar 

  22. T. Zhang, X. Yang, S. Yang, D. Li, F. Cheng, Z. Tao, J. Chen, Phys. Chem. Chem. Phys. 13, 18592 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. M.J. Valero-Pedraza, V. Gascón, M.A. Carreón, F. Leardini, J.R. Ares, Á. Martín, M. Sánchez-Sánchez, M.A. Bañares, Microporous Mesoporous Mater. 226, 454 (2016)

    Article  CAS  Google Scholar 

  24. S.W. Lai, H.L. Lin, T.L. Yu, L.P. Lee, B.J. Weng, Int. J. Hydrogen Energy 37, 14393 (2012)

    Article  CAS  Google Scholar 

  25. M. Rueda, L.M. Sanz-Moral, J.J. Segivia, Á. Martín, Microporous Mesoporous Mater. 237, 189 (2017)

    Article  CAS  Google Scholar 

  26. J.A. Sullivan, R. Herron, A.D. Phillips, Appl. Catal. B 201, 182 (2017)

    Article  CAS  Google Scholar 

  27. L. Han, Y. Zhou, T. He, G. Song, F. Wu, F. Jiang, J. Hu, J. Mater. Sci. 48, 5718 (2013)

    Article  CAS  Google Scholar 

  28. W. Li, X. Sha, W. Dong, Z. Wang, Chem. Commun. 2002, 2434 (2002)

    Article  Google Scholar 

  29. Z. Teng, Y. Han, F. Yan, W. Yang, Microporous Mesoporous Mater. 127, 67 (2010)

    Article  CAS  Google Scholar 

  30. G. Sui, Y. Zhao, Q. Zhang, Q. Fu, RSC Adv. 6, 54785 (2016)

    Article  CAS  Google Scholar 

  31. S.A. Memon, T.Y. Lo, H. Cui, S. Barbhuiya, Energy Build. 66, 697 (2013)

    Article  Google Scholar 

  32. S. Peil, D. Wisser, M. Stähle, P.K. Rossmann, Y.S. Avadhut, M. Hartmann, J. Phys. Chem. C 125, 9990 (2021)

    Article  CAS  Google Scholar 

  33. P.J. Fazen, E.E. Remsen, J.S. Beck, P.J. Carroll, A.R. McGhie, L.G. Sneddon, Chem. Mater. 7, 1942 (1995)

    Article  CAS  Google Scholar 

  34. S.I. Hirano, T. Yogo, S. Asada, S. Naka, J. Am. Ceram. Soc. 72, 66 (1989)

    Article  CAS  Google Scholar 

  35. B. Roy, U. Pal, A. Bishnoi, L.A. O’Dell, P. Sharma, Chem. Commun. 57, 1887 (2021)

    Article  CAS  Google Scholar 

  36. J. Brus, J. Czernek, M. Urbanova, L. Kobera, A. Jegorov, Phys. Chem. Chem. Phys. 19, 487 (2017)

    Article  CAS  Google Scholar 

  37. S. Léonardelli, L. Facchini, C. Fretigny, P. Tougne, A.P. Legrand, J. Am. Chem. Soc. 114, 6412 (1992)

    Article  Google Scholar 

  38. NIST X-ray Photoelectron Spectroscopy Database. https://srdata.nist.gov/xps/. Accessed 14 June 2021

  39. S. Yuan, B. Toury, C. Journet, A. Brioude, Nanoscale 6, 7838 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. D. Li, C.R. Zhang, B. Li, F. Cao, S.Q. Wang, Mater. Design 34, 401 (2012)

    Article  CAS  Google Scholar 

  41. C. Weinberger, S. Velter, M. Tiemann, T. Wagner, Microporous Mesoporous Mater. 223, 53 (2016)

    Article  CAS  Google Scholar 

  42. P. Tatarko, S. Grasso, H. Porwal, Z. Chlup, R. Saggar, I. Dlouhy, M.J. Reece, J. Eur. Ceram. Soc. 34, 3339 (2014)

    Article  CAS  Google Scholar 

  43. Y. Jing, Y. Wang, Y. Yu, Microporous Mesoporous Mater. 183, 124 (2014)

    Article  CAS  Google Scholar 

  44. C. Yang, J. Wang, Y. Chen, D. Liu, S. Huang, W. Lei, Nanoscale 10, 10979 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. F. Xiao, Z. Chen, G. Casillas, C. Richardson, H. Li, Z. Huang, Chem. Commun. 52, 3911 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Kevin Turani-I-Belloto (University of Montpellier) who, at the very start of the project, helped TU in his laboratory work, as well as Mr. Damien Alligier (University of Montpellier) who assisted TU. UBD thanks Mrs. Rimeh Mighri and Dr. Johan Alauzun (University of Montpellier) for the density measurements.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Syntheses and characterizations by TU and CACM; CO2 sorption measurements by JC; SEM by DC; Work led UBD; Data analyses and manuscript writing by UD, with help from CACM and TU; Manuscript validation by all.

Corresponding author

Correspondence to Umit B. Demirci.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umegaki, T., Castilla-Martinez, C.A., Cartier, J. et al. The porous composite BN@SHS made of boron nitride, silica hollow spheres and Si–O–B interface. J Porous Mater 29, 651–662 (2022). https://doi.org/10.1007/s10934-021-01189-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01189-8

Keywords

Navigation