Skip to main content
Log in

Ruthenium-containing MCM-22 and ITQ-2 as potential redox catalysts for benzhydrol oxidation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

About 5 wt% of ruthenium (Ru) was incorporated on layered zeolite frameworks, such as MCM-22 and ITQ-2, using the incipient wetness method. The well-dispersed ruthenium oxide (RuOx)-loaded materials were systematically characterized using various spectroscopic and analytical techniques. Fourier transform infrared spectroscopy and X-ray powder diffraction (FT-IR and XRD, respectively) analyses confirmed the presence of an MWW framework and highly crystalline nature of the synthesized materials. Nitrogen sorption data showed a decrease in surface area and pore volume for the Ru-loaded samples, which accounted for the dispersion of Ru in the pores and channels of the zeolite framework. The catalytic activities of the ruthenium loaded samples were investigated for benzhydrol oxidation using tert-butyl hydroperoxide (TBHP) in decane as an oxidant. Both Ru-MCM-22 and Ru-ITQ-2 catalysts exhibited comparable conversion (above 90%) with exclusive formation of benzophenone (100% selectivity). Linearity of the curve obtained from the ln [C] v/s time plot implies that the reaction follows first-order kinetics with respect to benzhydrol. The catalytic activity was retained for several runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis BH (2008) Handbook of Heterogeneous Catalysis: Online 16–37

  2. Gebbink, B. K. Zeolites in Catalysis Series Editors

  3. A. Sakthivel, A. lida, K. Komura, Y. Sugi, K.V.R. Chary, Nanosized β-zeolites with tunable particle sizes: synthesis by the dry gel conversion (DGC) method in the presence of surfactants, characterization and catalytic properties. Microporous Mesoporous Mater. 119, 322–330 (2009)

    Article  CAS  Google Scholar 

  4. Y. Wang, T. Yoki, S. Namba, J. Kondo, T. Tatsumi, Catalytic cracking of n-hexane for producing propylene on MCM-22 zeolites. Appl. Catal. A 504, 192–202 (2015)

    Article  CAS  Google Scholar 

  5. Y. Li, L. Li, J. Yu, Applications of zeolites in sustainable chemistry. Chem 3, 928–949 (2017)

    Article  CAS  Google Scholar 

  6. L. Xu, P. Wu, Diversity of layered zeolites: from synthesis to structural modifications. New J. Chem. 40(5), 3968–3981 (2016)

    Article  CAS  Google Scholar 

  7. W.J. Roth, P. Nachtigall, R.E. Morris, J. Cejka, Two-dimensional zeolites: current status and perspectives. Chem. Rev. 114(9), 4807–4837 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. M. Shamzhy, B. Gil, M. Opanasenko, W.J. Roth, J. Cejka, MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal. 11, 2366–2396 (2021)

    Article  CAS  Google Scholar 

  9. J. Roth, B. Gil, W. Makowski, S. Korzeniowska, J. Grzybek, M. Siweka, P. Michorczyk, Framework-substituted cerium MCM-22 zeolite and its interlayer expanded derivative MWW-IEZ. Catal. Sci. Technol. 6(8), 2742–2753 (2016)

    Article  CAS  Google Scholar 

  10. E.G. Derouane, J.C. Vedrine, R. Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemosand, F.R. Ribeiro, The acidity of zeolites: concepts, measurements and relation to catalysis: a review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. 55, 454–515 (2013)

    Article  CAS  Google Scholar 

  11. R. V. Jasra, J. Das, S. Unnikrishnan, A. Sakthivel, (2012) WO2012070067 (A2), US 2013/0330273 A1.

  12. S. Lande, A. Sakthivel, K.V.V.S.B.S.R. Murthy, S. Unnikrishnan, J. Das, R.V. Jasra, A solvent free method for preparation of β-amino alcohols by ring opening of epoxides with amines using MCM-22 as a catalyst. Int. J. Chem. Rec. Eng. 11, 407 (2013)

    Google Scholar 

  13. P. Sahu, S. Eniyarppu, M. Ahmed, D. Sharma, A. Sakthivel, Cerium ion-exchanged layered MCM-22: preparation, characterization and its application for esterification of fatty acids. J. Porous Mater. 25, 999–1005 (2018)

    Article  CAS  Google Scholar 

  14. P. Sahu, V. Ganesh, A. Sakthivel, Oxidation of a lignin-derived-model compound: Iso-eugenol to vanillin over cerium containing MCM-22. Catal. Commun. 145, 106099 (2020)

    Article  CAS  Google Scholar 

  15. P. Sahu, A. Tincy, A. Sreenavya et al., Molybdenum carbonyl grafted on amine-functionalized MCM-22 as potential catalyst for Iso-eugenol oxidation. Catal. Lett. 151, 1336–1349 (2021)

    Article  CAS  Google Scholar 

  16. T. Baskaran, J. Christopher, M. Mariyaselvakumar, A. Sakthivel, Preparation of an MCM-22/Hydrotalcite framework composite and its catalytic application. Eur. J. Inorg. Chem. 2017(18), 2396–2405 (2017)

    Article  CAS  Google Scholar 

  17. P. Sahu, T. Haripriya, A. Sreenavya et al., Alkali/alkaline earth ion-exchanged and palladium dispersed MCM-22 zeolite as a potential catalyst for eugenol isomerization and Heck coupling reactions. J. Chem. Sci. 132, 153 (2020)

    Article  CAS  Google Scholar 

  18. C. Delitala, M.D. Alba, A.I. Becerro, D. Delpiano, D. Meloni, E. Musu, I. Ferino, Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural, morphological and textural characterisation. Microporous Mesoporous Mater. 118, 1–10 (2009)

    Article  CAS  Google Scholar 

  19. S.L. Lawton, M.E. Leonowicz, R.D. Partridge, P. Chu, M.K. Rubin, Twelve-ring pockets on the external surface of MCM-22 crystals. Microporous Mesoporous Mater. 23, 109–117 (1998)

    Article  CAS  Google Scholar 

  20. R. Thakkar, R. Bandyopadhyay, Preparation, characterization, and post-synthetic modification of layered MCM-22 zeolite precursor. J. Chem. Sci. 129, 1671–1676 (2017)

    Article  CAS  Google Scholar 

  21. E.G. Derouane, J.C. Vedrine, R. Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F.R. Ribeiro, Influence of rare earth elements La, Nd and Yb on the acidity of H-MCM-22 and H-Beta zeolites. Catal. Today. 107–108, 663–670 (2005)

    Google Scholar 

  22. H. Liu, L. Su, H. Wang, W. Shen, X. Bao, Y. Xu, The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts. Appl. Catal. A 236, 263–280 (2002)

    Article  CAS  Google Scholar 

  23. A. Corma, V. Fornes, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998)

    Article  CAS  Google Scholar 

  24. R. Schenkel, J.O. Barth, J. Kornatowski, J.A. Lercher, Chemical and structural aspects of the transformation of the MCM-22 precursor into ITQ-2. Stud. Surf. Sci. Catal. 142, 69–76 (2002)

    Article  Google Scholar 

  25. A. Chica, S. Sayas, Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite. Catal. Today 146(1–2), 37–43 (2009)

    Article  CAS  Google Scholar 

  26. H.K. Min, M.B. Park, S.B. Hong, Methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites. J. Catal. 271(2), 186–194 (2010)

    Article  CAS  Google Scholar 

  27. M.M. Antunes, S. Lima, A. Fernandes, M. Pillinger, M.F. Ribeiro, A.A. Valente, Aqueous-phase dehydration of xylose to furfural in the presence of MCM-22 and ITQ-2 solid acid catalysts. Appl. Catal. A 417, 243–252 (2012)

    Article  Google Scholar 

  28. C. Mondelli, G. Gozaydın, N. Yan, J. Perez-Ramirez, Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 49(12), 3764–3782 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. W. Schutyser, S. Van den Bosch, J. Dijkmans, S. Turner, M. Meledina, G. Van Tendeloo, B.F. Sels, Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone based polymer building blocks. Chemsuschem 8(10), 1805–1818 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Hu, G. Jiang, G. Xu, X. Mu, Hydrogenolysis of lignin model compounds into aromatics with bimetallic Ru-Ni supported onto nitrogen-doped activated carbon catalyst. Mol. Catal. 445, 316–326 (2018)

    Article  CAS  Google Scholar 

  31. G. Yao, G. Wu, W. Dai, N. Guan, L. Li, Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions. Fuel 150, 175–183 (2015)

    Article  CAS  Google Scholar 

  32. A.S. Ouedraogo, P.R. Bhoi, Recent progress of metals supported catalysts for hydrodeoxygenation of biomass derived pyrolysis oil. J. Clean. Prod. 253, 119957 (2020)

    Article  CAS  Google Scholar 

  33. G.L. Haller, D.E. Resasco, Metal–support interaction: group VIII metals and reducible oxides. Adv. Catal. 36, 173–235 (1989)

    CAS  Google Scholar 

  34. Y.W. Chen, H.T. Wang, J.G. Goodwin Jr., Support effects on CO hydrogenation over Ru/Zeolite catalysts. J. Catal. 85(2), 499–508 (1984)

    Article  CAS  Google Scholar 

  35. A. Gual, C. Godard, S. Castillon, D. Curulla-Ferre, C. Claver, Colloidal Ru, Co and Fe-nanoparticles: synthesis and application as nanocatalysts in the Fischer-Tropsch process. Catal. Today 183(1), 154–171 (2012)

    Article  CAS  Google Scholar 

  36. A. Bjelic, M. Grilc, S. Gyergyek, A. Kocjan, D. Makovec, B. Likozar, Catalytic hydrogenation, hydrodeoxygenation, and hydrocracking processes of a lignin monomer model compound eugenol over magnetic Ru/C–Fe2O3 and mechanistic reaction microkinetics. Catalysts 8(10), 425 (2018)

    Article  Google Scholar 

  37. C. Naccache, Y. Taarit, Y. Ben. F.R. Ribeiro et al. (eds.). pp 373–396 (1984).

  38. W. Shi, X. Liu, J. Zeng, J. Wang, Y. Wei, T. Zhu, Gas - solid catalytic reactions over ruthenium - based catalysts. Chin. J. Catal. 37(8), 1181–1192 (2016)

    Article  CAS  Google Scholar 

  39. K. Villani, C.E.A. Kirschhock, Catalytic carbon oxidation over ruthenium- based catalysts. Angew. Chem. Int. Edn. 45(9), 3106–3109 (2020)

    Google Scholar 

  40. A. Jabłońska-Wawrzycka, P. Rogala, G. Czerwonka, S. Michałkiewicz, M. Hodorowicz, P. Kowalczyk, Ruthenium(IV) complexes as potential inhibitors of bacterial biofilm formation. Molecules 25, 4938 (2020)

    Article  PubMed Central  Google Scholar 

  41. S. Altwasser, R. Gläser, J. Weitkamp, Ruthenium-containing small-pore zeolites for shape-selective catalysis. Microporous Mesoporous Mater. 104(1–3), 281–288 (2007)

    Article  CAS  Google Scholar 

  42. S.K. Das, P.K. Dutta, Synthesis and characterization of a ruthenium oxide-zeolite Y catalyst for photochemical oxidation of water to dioxygen. Microporous Mesoporous Mater. 22, 475–483 (1998)

    Article  CAS  Google Scholar 

  43. V. Mane, Liquid phase oxidation of benzhydrol by using nano crystalline iron supported on ceria mixed oxide catalysts. Res J Pharm Biol Chem Sci 6(10), 9–10 (2015)

    Google Scholar 

  44. T.G. Holkar, P.U.W. Khandalkar, P.P.R. Angre, Environmentally friendly phase transfer catalytic oxidation of benzhydrol to benzophenone using hydrogen peroxide. J. Chem. Educ. 5, 93–101 (2017)

    Google Scholar 

  45. R.V. Jasra, J. Das, A. Unnikrishnan, A. Sakthivel U S Pat WO 2012/070067 A2 (2012)

  46. R.C.N. Leite, B.V. Sousa, M.G.F. Rodrigues, Synthesis of zeolite membrane (MCM-22/α-alumina) and its application in the process of oil-water separation. Braz. J. Gas. 3, 75–82 (2009)

    Google Scholar 

  47. A. Corma, C. Corell, J. Perez-Pariente, Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy. Zeolites 15, 153–162 (1995)

    Google Scholar 

  48. S. Bordiga, C. Lamberti, F. Bonino, A. Travert, F. Thibault-Starzyk, Probing zeolites by vibrational spectroscopies. Chem. Soc. Rev. 44(20), 7262–7341 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. G.R. Reddy, S. Balasubramanian, K. Chennakesavulu, Zeolite encapsulated Ni (II) and Cu (II) complexes with tetradentate N2O2 Schiff base ligand: catalytic activity towards oxidation of benzhydrol and degradation of rhodamine-B. J. Mater. Chem. A 2(37), 15598–15610 (2014)

    Article  Google Scholar 

  50. S. Vijaikumar, N. Somasundaram, C. Srinivasan, Photoinduced oxidation of benzhydrol and reduction of benzil on titanium dioxide. Appl. Catal. A 223(1–2), 129–135 (2002)

    Article  CAS  Google Scholar 

  51. G.R. Reddy, K. Chennakesavulu, Synthesis and characterization of Nb2O5 supported Pd (II)@ SBA15: catalytic activity towards oxidation of benzhydrol and Rhodamine-B. J. Mol. Struct. 1075, 406–412 (2014)

    Article  Google Scholar 

  52. R. Rahimi, S.Z. Ghoreishi, M.G. Dekamin Mild oxidation of benzhydrol by t-butyl hydroproxide in the presence of silica supported iron porphyrin as a heterogeneous catalyst. In: 14th edition of the international electronic conference on synthetic organic chemistry (Vol. 14, pp. a033–1). MDPI. (2010)

  53. Z. Lounis, N. Boumesla, A.E.K. Bengueddach, Oxidation of benzylic alcohols over Cr (MCM-41/ZSM-5) assisted by microwaves. Appl. Petrochem. Res. 2(1), 45–50 (2012)

    Article  CAS  Google Scholar 

  54. A.S. Burange, R.V. Jayaram, R. Shukla, A.K. Tyagi, Oxidation of benzylic alcohols to carbonyls using tert-butyl hydroperoxide over pure phase nanocrystalline CeCrO3. Catal. Commun. 40, 27–31 (2013)

    Article  CAS  Google Scholar 

  55. M. Sarkheil, M. Lashanizadegan, M. Ghiasi, High catalytic activity of magnetic Fe3O4@ SiO2-Schiff base-Co (II) nanocatalyst for aerobic oxidation of alkenes and alcohols and DFT study. J. Mol. Struct. 1179, 278–288 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank DST-SERB-CRG (Project No. CRG/2019/004624) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sakthivel.

Ethics declarations

Conflict of interest

No conflict of interest declared by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, A., Nimisha, N.P., Sreenavya, A. et al. Ruthenium-containing MCM-22 and ITQ-2 as potential redox catalysts for benzhydrol oxidation. J Porous Mater 29, 591–599 (2022). https://doi.org/10.1007/s10934-021-01182-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01182-1

Keywords

Navigation