Skip to main content

Advertisement

Log in

A three-in-one strategy for facile fabrication of hierarchically porous n-doped carbons: enhanced CO2 capture and tetracycline removal

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The formation of high-quality hierarchically porous N-doped carbons with multi-scale pores, high specific surface area and large pore volume generally suffers from multistep complicated procedures. It still remains a great challenge to develop facile and effective approaches. Here, a novel three-in-one strategy (synergistic self-templating, self-activation and in-situ N-doping) was designed to fabricate hierarchically porous N-doped carbons (HPNCs) directly, via a one-pot carbonization using ethylenediaminetetraacetic acid tripotassium salt dehydrate (EDTA-3K) as the sole starting material. The as-obtained HPNCs exhibited 3D porous architecture, very high BET surface areas (e.g., 2787 m2 g−1), rich porosity and good nitrogen doping amounts, resulting in good CO2 capture capacity (e.g., 5.80 mmol g−1, at 273 K and 1.0 bar), and tetracycline adsorption ability (e.g., 1092 mg g−1). This discovery can provide a new concept for simply fabricating well-defined and unique functional porous carbons for various applications, such as sensor, energy storage and conversion, adsorption, separation, catalysis, bio-medicine, environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.A. Hirst, A. Taylor, R. Mokaya, A simple flash carbonization route for conversion of biomass to porous carbons with high CO2 storage capacity. J. Mater. Chem. A 6, 12393–12403 (2018)

    CAS  Google Scholar 

  2. H.G. Wang, Z.H. Cheng, Y.Z. Liao, J.H. Li, J. Weber, A. Thomas, C.F.J. Faul, Conjugated microporous polycarbazole networks as precursors for nitrogen-enriched microporous carbons for CO2 storage and electrochemical capacitors. Chem. Mater. 29, 4885–4893 (2017)

    CAS  Google Scholar 

  3. H.N. Che, G.B. Che, P.J. Zhou, C.B. Liu, H.J. Dong, C.X. Li, N. Song, C.M. Li, Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H-2-production in visible to near-infrared region. Chem. Eng. J. 382, 122870 (2020)

    CAS  Google Scholar 

  4. N.L. Gao, Z.Y. Lu, X.X. Zhao, Z. Zhu, Y.S. Wang, D.D. Wang, Z.F. Hua, C.X. Li, P.W. Huo, M.S. Song, Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass. Chem. Eng. J. 304, 351–361 (2016)

    CAS  Google Scholar 

  5. W.T. Koo, J.H. Cha, J.W. Jung, S.J. Choi, J.S. Jang, D.H. Kim, I.D. Kim, Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 28, 1802575 (2018)

    Google Scholar 

  6. P. Cataldi, S. Dussoni, L. Ceseracciu, M. Maggiali, L. Natale, G. Metta, A. Athanassiou, I.S. Bayer, Carbon nanofiber versus graphene-based stretchable capacitive touch sensors for artificial electronic skin. Adv. Sci. 5, 1870011 (2018)

    Google Scholar 

  7. D.Z. Guo, S.W. Wu, X.C. Xu, X.H. Niu, X. Li, Z.J. Li, J.M. Pan, A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester. Chem. Eng. J. 373, 1–7 (2019)

    CAS  Google Scholar 

  8. F.F. Zhu, W.J. Liu, Y. Liu, W.D. Shi, Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 383, 123150 (2020)

    CAS  Google Scholar 

  9. Y.J. Zhou, X. Li, J.Z. Li, S.K. Yin, D. Shen, C.Y. Li, P.W. Huo, H.Q. Wang, Y.S. Yan, S.Q. Yuan, MOF-derived Co3O4-C/Ni2P2O7 electrode material for high performance supercapacitors. Chem. Eng. J. 378, 122242 (2019)

    CAS  Google Scholar 

  10. C.X. Huang, Y.H. Ding, C. Hao, S.S. Zhou, X.H. Wang, H.W. Gao, L.L. Zhu, J.B. Wu, PVP-assisted growth of Ni-Co oxide on N-doped reduced graphene oxide with enhanced pseudocapacitive behavior. Chem. Eng. J. 378, 122202 (2019)

    CAS  Google Scholar 

  11. H. Yamamoto, S. Muratsubaki, K. Kubota, M. Fukunishi, H. Watanabe, J. Kim, S. Komaba, Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J. Mater. Chem. A 6, 16844–16848 (2018)

    CAS  Google Scholar 

  12. J.X. Qiu, S. Li, X.T. Su, Y.Z. Wang, L. Xu, S.Q. Yuan, H.M. Li, S.Q. Zhang, Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage. Chem. Eng. J. 320, 300–307 (2017)

    CAS  Google Scholar 

  13. A.T. Xie, J.D. Dai, X. Chen, P. Ma, J.S. He, C.X. Li, Z.P. Zhou, Y.S. Yan, Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation. Chem. Eng. J. 304, 609–620 (2016)

    CAS  Google Scholar 

  14. J.D. Dai, S.J. Tian, Y.H. Jiang, Z.S. Chang, A.T. Xie, R.L. Zhang, Y.S. Yan, Facile synthesis of porous carbon sheets from potassium acetate via in-situ template and self-activation for highly efficient chloramphenicol removal. J. Alloys Compd. 732, 222–232 (2018)

    CAS  Google Scholar 

  15. A.T. Xie, J.D. Dai, J.Y. Cui, J.H. Lang, M.B. Wei, X.H. Dai, C.X. Li, Y.S. Yan, Novel graphene oxide-confined nanospace directed synthesis of glucose-based porous carbon nanosheets with enhanced adsorption performance. ACS Sustain. Chem. Eng. 5, 11566–11576 (2017)

    CAS  Google Scholar 

  16. Z.Y. Liu, Y.G. Adewuyi, S. Shi, H. Chen, Y. Li, D.J. Liu, Y.X. Liu, Removal of gaseous Hg-0 using novel seaweed biomass-based activated carbon. Chem. Eng. J. 366, 41–49 (2019)

    CAS  Google Scholar 

  17. J.D. Dai, R.L. Zhang, W.N. Ge, A.T. Xie, Z.S. Chang, S.J. Tian, Z.P. Zhou, Y.S. Yan, 3D macroscopic superhydrophobic magnetic porous carbon aerogel converted from biorenewable popcorn for selective oil-water separation. Mater. Des. 139, 122–131 (2018)

    CAS  Google Scholar 

  18. Y.H. Abdelmoaty, T.D. Tessema, N. Norouzi, O.M. El-Kadri, J.B.M. Turner, H.M. Ekaderi, Effective approach for increasing the heteroatom doping levels of porous carbons for superior CO2 capture and separation performance. ACS Appl. Mater. Interfaces 9, 35802–35810 (2017)

    CAS  PubMed  Google Scholar 

  19. J. Du, L. Liu, Z.P. Hu, Y.F. Yu, Y.M. Qin, A.B. Chen, Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy. Adv. Funct. Mater. 28, 1802332 (2018)

    Google Scholar 

  20. J.S.M. Lee, M.E. Briggs, C.C. Hu, A.I. Cooper, Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46, 277–289 (2018)

    CAS  Google Scholar 

  21. Z.S. Chang, J.D. Dai, A.T. Xie, J.S. He, R.L. Zhang, S.J. Tian, Y.S. Yan, C.X. Li, W. Xu, R. Shao, From lignin to three-dimensional interconnected hierarchically porous carbon with high surface area for fast and superhigh-efficiency adsorption of sulfamethazine. Ind. Eng. Chem. Res. 56, 9367–9375 (2017)

    CAS  Google Scholar 

  22. L. Yao, Q. Wu, P.X. Zhang, J.M. Zhang, D.R. Wang, Y.L. Li, X.Z. Ren, H.W. Mi, L.B. Deng, Z.J. Zheng, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018)

    Google Scholar 

  23. K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril, P. Gomez-Romero, R.A. Fischer, Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 30, 1705789 (2018)

    Google Scholar 

  24. L. Estevez, R. Dua, N. Bhandari, A. Ramanujapuram, P. Wang, E.P. Giannelis, A facile approach for the synthesis of monolithic hierarchical porous carbons—high performance materials for amine based CO2 capture and supercapacitor electrode. Energy Environ. Sci. 6, 1785–1790 (2013)

    CAS  Google Scholar 

  25. J. Pang, W.F. Zhang, J.L. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chem. 19, 3916–3926 (2017)

    CAS  Google Scholar 

  26. Z.H. Li, D.C. Wu, Y.R. Liang, R.W. Fu, K. Matyjaszewski, Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J. Am. Chem. Soc. 136, 4805–4808 (2014)

    CAS  PubMed  Google Scholar 

  27. K.X. Zou, Y.F. Deng, J.P. Chen, Y.Q. Qian, Y.W. Yang, Y.W. Li, G.H. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)

    CAS  Google Scholar 

  28. S.K. Park, K. Choi, S.H. Lee, I.K. Oh, S. Park, H.S. Park, CNT branching of three-dimensional steam-activated graphene hybrid frameworks for excellent rate and cyclic capabilities to store lithium ions. Carbon 116, 500–509 (2017)

    CAS  Google Scholar 

  29. A. Modak, A. Bhaumik, Porous carbon derived via KOH activation of a hypercrosslinked porous organic polymer for efficient CO2, CH4, H2 adsorptions and high CO2/N2 selectivity. J. Solid State Chem. 232, 157–162 (2015)

    CAS  Google Scholar 

  30. Z.X. Xu, X.D. Zhuang, C.Q. Yang, J. Cao, Z.Q. Yao, Y.P. Tang, J.Z. Jiang, D.Q. Wu, X.L. Feng, Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 28, 1981 (2016)

    CAS  PubMed  Google Scholar 

  31. M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, H. Uyama, Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. 48, 10283–10285 (2012)

    CAS  Google Scholar 

  32. D.Z. Zhu, J.X. Jiang, D.M. Sun, X.Y. Qian, Y.W. Wang, L.C. Li, Z.W. Wang, X.L. Chai, L.H. Gan, M.X. Liu, A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J. Mater. Chem. A 6, 12334–12343 (2018)

    CAS  Google Scholar 

  33. G.Y. Zhao, C. Chen, D.F. Yu, L. Sun, C.H. Yang, H. Zhang, Y. Sun, F. Besenbacher, M. Yu, One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547–555 (2018)

    CAS  Google Scholar 

  34. J.D. Dai, L.L. Wang, A. Xie, J.S. He, Y.S. Yan, Reactive template and confined self-activation strategy: three-dimensional interconnected hierarchically porous N/O-doped carbon foam for enhanced supercapacitors. ACS Sustain. Chem. Eng. 8, 739–748 (2020)

    CAS  Google Scholar 

  35. M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)

    CAS  PubMed  Google Scholar 

  36. B. Xu, D.F. Zheng, M.Q. Jia, G.P. Cao, Y.S. Yang, Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim. Acta 98, 176–182 (2013)

    CAS  Google Scholar 

  37. D. Ressnig, T. Corbiere, T. Lunkenbein, U. Braun, M.G. Willinger, M. Antonietti, Decomposition synthesis of tuneable, macroporous carbon foams from crystalline precursors via in situ templating. J. Mater. Chem. A 2, 18076–18081 (2014)

    CAS  Google Scholar 

  38. S.J. Tian, J.D. Dai, Y.H. Jiang, Z.S. Chang, A. Xie, J.S. He, R.L. Zhang, Y.S. Yan, Facile preparation of intercrossed-stacked porous carbon originated from potassium citrate and their highly effective adsorption performance for chloramphenicol. J. Colloid Interface Sci. 505, 858–869 (2017)

    CAS  PubMed  Google Scholar 

  39. A.C. Martins, O. Pezoti, A.L. Cazetta, K.C. Bedin, D.A.S. Yamazaki, G.F.G. Bandoch, T. Asefa, J.V. Visentainer, V.C. Almeida, Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 260, 291–299 (2015)

    CAS  Google Scholar 

  40. R. Acosta, V. Fierro, A.M. de Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere 149, 168–176 (2016)

    CAS  PubMed  Google Scholar 

  41. Y. Gao, Y. Li, L. Zhang, H. Huang, J.J. Hu, S.M. Shah, X.G. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368, 540–546 (2012)

    CAS  PubMed  Google Scholar 

  42. L.H. Huang, C.X. Shi, B. Zhang, S.F. Niu, B.Y. Gao, Characterization of activated carbon fiber by microwave heating and the adsorption of tetracycline antibiotics. Sep. Sci. Technol. 48, 1356–1363 (2013)

    CAS  Google Scholar 

  43. P. Liu, W.J. Liu, H. Jiang, J.J. Chen, W.W. Li, H.Q. Yu, Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 121, 235–240 (2012)

    CAS  PubMed  Google Scholar 

  44. J. Rivera-Utrilla, C.V. Gomez-Pacheco, M. Sanchez-Polo, J.J. Lopez-Penalver, R. Ocampo-Perez, Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. J. Environ. Manag. 131, 16–24 (2013)

    CAS  Google Scholar 

  45. L. Zhang, X.Y. Song, X.Y. Liu, L.J. Yang, F. Pan, J.N. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J. 178, 26–33 (2011)

    CAS  Google Scholar 

  46. H.M. Jang, S. Yoo, Y.K. Choi, S. Park, E. Kan, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour. Technol. 259, 24–31 (2018)

    CAS  PubMed  Google Scholar 

  47. W.J. Tian, H.Y. Zhang, H.Q. Sun, A. Suvorova, M. Saunders, M. Tade, S.B. Wang, Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications. Adv. Funct. Mater. 26, 8651–8661 (2016)

    CAS  Google Scholar 

  48. J. Gong, H.J. Lin, M. Antonietti, J.Y. Yuan, Nitrogen-doped porous carbon nanosheets derived from poly(ionic liquid)s: hierarchical pore structures for efficient CO2 capture and dye removal. J. Mater. Chem. A 4, 7313–7321 (2016)

    CAS  Google Scholar 

  49. S.J. Yang, M. Antonietti, N. Fechler, Self-assembly of metal phenolic mesocrystals and morphosynthetic transformation toward hierarchically porous carbons. J. Am. Chem. Soc. 137, 8269–8273 (2015)

    CAS  PubMed  Google Scholar 

  50. X.C. Ma, L.Q. Li, R.F. Chen, C.H. Wang, H.Y. Li, H.L. Li, Highly nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 for CO2 capture. Chem. Asian J. 13, 2069–2076 (2018)

    CAS  Google Scholar 

  51. A. Aijaz, N. Fujiwara, Q. Xu, From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136, 6790–6793 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21676127 and 21776110), Natural Science Foundation of Jiangsu Province (BK20170532, BK20160568 and BK20160501), China Postdoctoral Science Foundation (2017M620194), Jiangsu Planned Projects for Postdoctoral Research Funds (1701023A), and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (17KJB430011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangdong Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Dai, J., He, J. et al. A three-in-one strategy for facile fabrication of hierarchically porous n-doped carbons: enhanced CO2 capture and tetracycline removal. J Porous Mater 27, 1755–1763 (2020). https://doi.org/10.1007/s10934-020-00946-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00946-5

Keywords

Navigation