Skip to main content
Log in

Synthesis of morphology-controlled N-doped porous carbon for simultaneous electrochemical sensing of dihydroxybenzene isomers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Different morphology of N-doped carbon materials, including three-dimensional interconnected N-doped hierarchically porous carbon networks (3D-NC), two-dimensional ultrathin porous carbon nanosheets (2D-NC), and bulk N-doped carbon with micron size (bulk-NC), was easily prepared by using NaCl crystal templates–assisted strategy. Compared with bare glassy carbon, bulk-NC, and 2D-NC, the as-synthesized 3D-NC exhibits excellent electrochemical activity toward the oxidation and sensing of three kinds of common environmental pollutants dihydroxybenzene isomers (hydroquinone (HQ), catechol (CC), and resorcinol (RS)). The impressive electrochemical activity of 3D-NC can be interpreted by its large specific surface area, continuous network-like morphology, superior electro-catalytic ability, and strong accumulation efficiency. Differential pulse voltammetry (DPV) test showed the 3D-NC-modified electrode exhibited three well-separated oxidation peaks at 0.05 V, 0.14 V, and 0.45 V vs. saturated calomel electrode (SCE) for HQ, CC, and RS, and their detection limits were evaluated to be as low as 0.0044, 0.012, and 0.016 mg L−1, respectively. Finally, a novel electrochemical analytical platform is successfully fabricated for the simultaneous monitoring of hydroquinone, catechol, and resorcinol with high sensitivity. When used for real wastewater samples analysis, recovery ratio ranging from 94 to 108% with lower than 5% of relative standard deviation (RSD) values was achieved. This work proves a facile strategy to prepare morphology-controlled N-doped carbon-based material and demonstrates its high application potential for environmental monitoring and electrochemical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gan T, Wang Z, Gao J, Sun J, Wu K, Wang H, Liu Y (2019) Morphology-dependent electrochemical activity of Cu2O polyhedrons and construction of sensor for simultaneous determination of phenolic compounds with graphene oxide as reinforcement. Sens Actuat B-Chem 282:549–558. https://doi.org/10.1016/j.snb.2018.11.102

    Article  CAS  Google Scholar 

  2. Long L, Liu H, Liu X, Chen L, Wang S, Liu C, Dong S, Jia J (2020) Co-embedded N-doped hierarchical carbon arrays with boosting electrocatalytic activity for in situ electrochemical detection of H2O2. Sens Actuat B-Chem 318:128242. https://doi.org/10.1016/j.snb.2020.128242

    Article  CAS  Google Scholar 

  3. Sun J, Xu L, Shi Z, Zhao Q, Wang H, Gan T (2021) Morphology-tunable hollow Mn2O3 nanostructures: highly efficient electrocatalysts and their electrochemical sensing for phenolic endocrine disruptors via toughening of graphene oxide. Sens Actuat B-Chem 327:128889. https://doi.org/10.1016/j.snb.2020.128889

    Article  CAS  Google Scholar 

  4. Wang Y, Tao L, Xiao Z, Chen R, Jiang Z, Wang S (2018) 3d carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv Funct Mater 28(11):1705356. https://doi.org/10.1002/adfm.201705356

    Article  CAS  Google Scholar 

  5. Zhang Y, Wan Q, Yang N (2019) Recent advances of porous graphene: synthesis, functionalization, and electrochemical applications. Small 15(48):1903780. https://doi.org/10.1002/smll.201903780

    Article  CAS  Google Scholar 

  6. Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S (2020) Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater 30(17):1909265. https://doi.org/10.1002/adfm.201909265

    Article  CAS  Google Scholar 

  7. Liu C, Li Q, Kang W, Lei W, Wang X, Lu C, Naebe M (2022) Structural design and mechanism analysis of hierarchically porous carbon fiber for advanced energy and environmental applications. J Mater Chem A 10:10–49. https://doi.org/10.1039/D1TA08646D

    Article  Google Scholar 

  8. Xie L, Su F, Xie L, Guo X, Wang Z, Kong Q, Sun G, Ahmad A, Li X, Yi Z (2020) Effect of pore structure and doping species on charge storage mechanisms in porous carbon-based supercapacitors. Mater Chem Front 4(9):2610–2634. https://doi.org/10.1039/D0QM00180E

    Article  CAS  Google Scholar 

  9. Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140. https://doi.org/10.1016/j.carbon.2018.02.024

    Article  CAS  Google Scholar 

  10. Wu C, Zhang Y, Dong D, Xie H, Li J (2017) Co9S8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Nanoscale 9(34):12432–12440. https://doi.org/10.1039/C7NR03950F

    Article  CAS  PubMed  Google Scholar 

  11. Chen X, He X, Gao J, Jiang J, Jiang X, Wu C (2019) Three-dimensional porous Ni, N-codoped C networks for highly sensitive and selective non-enzymatic glucose sensing. Sens Actuat B-Chem 299:126945. https://doi.org/10.1016/j.snb.2019.126945

    Article  CAS  Google Scholar 

  12. Wu C, Li J (2017) Unique hierarchical Mo2C/C nanosheet hybrids as active electrocatalyst for hydrogen evolution reaction. ACS Appl Mater Inter 9(47):41314–41322. https://doi.org/10.1021/acsami.7b13822

    Article  CAS  Google Scholar 

  13. Huang L, Cao Y, Diao D (2020) Electrochemical activation of graphene sheets embedded carbon films for high sensitivity simultaneous determination of hydroquinone, catechol and resorcinol. Sens Actuat B-Chem 305:127495. https://doi.org/10.1016/j.snb.2019.127495

    Article  CAS  Google Scholar 

  14. Yin D, Liu J, Bo X, Guo L (2020) Cobalt-iron selenides embedded in porous carbon nanofibers for simultaneous electrochemical detection of trace of hydroquinone, catechol and resorcinol. Anal Chim Acta 1093:35–42. https://doi.org/10.1016/j.snb.2019.127495

    Article  CAS  PubMed  Google Scholar 

  15. Nagaraja P, Vasantha RA, Sunitha KR (2001) A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations. J Pharmaceut Biomed 25(3–4):417–424. https://doi.org/10.1016/S0731-7085(00)00504-5

    Article  CAS  Google Scholar 

  16. Liu Y, Wang YM, Zhu WY, Zhang CH, Tang H, Jiang JH (2018) Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. Anal Chim Acta 1012:60–65. https://doi.org/10.1016/j.aca.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  17. Elboughdiri N, Mahjoubi A, Shawabkeh A, Khasawneh HE, Jamoussi B (2015) Optimization of the degradation of hydroquinone, resorcinol and catechol using response surface methodology. Adv Chem Eng Sci 5(02):111. https://doi.org/10.4236/aces.2015.52012

    Article  CAS  Google Scholar 

  18. Kovács Á, Mörtl M, Kende A (2011) Development and optimization of a method for the analysis of phenols and chlorophenols from aqueous samples by gas chromatography–mass spectrometry, after solid-phase extraction and trimethylsilylation. Microchem J 99(1):125–131. https://doi.org/10.1016/j.microc.2011.04.007

    Article  CAS  Google Scholar 

  19. Shi L, Chen K, Du R, Bachmatiuk A, Rümmeli MH, Priydarshi MK, Zhang Y, Manivannan A, Liu Z (2015) Direct synthesis of few-layer graphene on NaCl crystals. Small 11(47):6302–6308. https://doi.org/10.1002/smll.201502013

    Article  CAS  PubMed  Google Scholar 

  20. Fina F, Callear SK, Carins GM, Irvine JT (2015) Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem Mater 27(7):2612–2618. https://doi.org/10.1021/acs.chemmater.5b00411

    Article  CAS  Google Scholar 

  21. Li X, Shen J, Wu C, Wu K (2019) Ball-mill-exfoliated graphene: tunable electrochemistry and phenol sensing. Small 15(48):1805567. https://doi.org/10.1002/smll.201805567

    Article  CAS  Google Scholar 

  22. Hassan M, Haque E, Reddy KR, Minett AI, Chen J, Gomes VG (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6(20):11988–11994. https://doi.org/10.1039/C4NR02365J

    Article  CAS  PubMed  Google Scholar 

  23. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271):361–365. https://doi.org/10.1126/science.aad0832

    Article  CAS  PubMed  Google Scholar 

  24. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1355

    Article  CAS  Google Scholar 

  25. Randles J (1948) A cathode ray polarograph. Trans Faraday Soc 44:322–327.A.

  26. Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation. Nano Res 7(1):71–78. https://doi.org/10.1007/s12274-013-0372-0

    Article  CAS  Google Scholar 

  27. Anson FC (1966) Innovations in the study of adsorbed reactants by chronocoulometry. Anal Chem 38(1):54–57

    Article  CAS  Google Scholar 

  28. Walczak MM, Dryer DA, Jacobson DD, Foss MG (1997) Flynn NT, pH Dependent redox couple: an illustration of the nernst equation. J Chem Educ 74(10):1195. https://doi.org/10.1021/ed074p1195

    Article  CAS  Google Scholar 

  29. Mohapatra D, Gowthaman N, Sayed MS, Shim JJ (2020) Simultaneous ultrasensitive determination of dihydroxybenzene isomers using GC electrodes modified with nitrogen-doped carbon nano-onions. Sens Actuat B-Chem 304:127325. https://doi.org/10.1016/j.snb.2019.127325

    Article  CAS  Google Scholar 

  30. Lopa NS, Rahman MM, Jang H, Sutradhar SC, Ahmed F, Ryu T, Kim W (2018) A glassy carbon electrode modified with poly (2, 4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers. Microchim Acta 185(1):1–9. https://doi.org/10.1007/s00604-017-2567-7

    Article  CAS  Google Scholar 

  31. Yang H, Li S, Yu H, Zheng F, Lin L, Chen J, Li Y, Lin Y (2019) In situ construction of hollow carbon spheres with N Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers. Nanoscale 11(18):8950–8958. https://doi.org/10.1039/C9NR01146C

    Article  CAS  PubMed  Google Scholar 

  32. Arul P, Narayanamoorthi E, John SA (2020) Covalent organic framework film as an effective electrocatalyst for the simultaneous determination of dihydroxybenzene isomers in water samples. Sens Actuat B-Chem 313:128033. https://doi.org/10.1016/j.snb.2020.128033

    Article  CAS  Google Scholar 

  33. Khalifa Z, Hassan K, Abo Oura MF, Hathoot A, Azzem MA (2020) Individual and simultaneous voltammetric determination of ultra-trace environmental contaminant dihydroxybenzene isomers based on a composite electrode sandwich-like structure. ACS Omega 5(30):18950–18957. https://doi.org/10.1021/acsomega.0c02228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang S, Yang M, Yao X, Fa H, Wang Y, Hou C (2020) A zeolitic imidazolate framework/carbon nanofiber nanocomposite based electrochemical sensor for simultaneous detection of co-existing dihydroxybenzene isomers. Sens Actuat B-Chem 320:128294. https://doi.org/10.1016/j.snb.2020.128294

    Article  CAS  Google Scholar 

  35. Chetankumar K, Kumara Swamy B, Sharma S, Adarsha H (2021) Coomassie brilliant blue G 250 modified carbon paste electrode sensor for the voltammetric detection of dihydroxybenzene isomers. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-021-95347-2

    Article  CAS  Google Scholar 

  36. Feng Y, Li Y, Tong Y, Cui C, Li X, Ye BC (2021) Simultaneous determination of dihydroxybenzene isomers in cosmetics by synthesis of nitrogen-doped nickel carbide spheres and construction of ultrasensitive electrochemical sensor. Anal Chim Acta 1176:338768. https://doi.org/10.1016/j.aca.2021.338768

    Article  CAS  PubMed  Google Scholar 

  37. Sultana S, Noroozifar M, Kerman K (2021) Ruthenium red-functionalized sol-gel and multi-walled carbon nanotubes for electrochemical simultaneous detection of three dihydroxybenzene isomers. J Electroanal Chem 899:115644. https://doi.org/10.1016/j.jelechem.2021.115644

    Article  CAS  Google Scholar 

  38. Ranjith KS, Vilian AE, Ghoreishian SM, Umapathi R, Hwang SK, Oh CW, Huh YS, Han YK (2022) Hybridized 1D–2D MnMoO4-MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples. J Hazard Mater 421:126775. https://doi.org/10.1016/j.jhazmat.2021.126775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21804031, 22174033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Qin or Shengxiang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4.41 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, M., Zhang, G. et al. Synthesis of morphology-controlled N-doped porous carbon for simultaneous electrochemical sensing of dihydroxybenzene isomers. Microchim Acta 189, 381 (2022). https://doi.org/10.1007/s00604-022-05475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05475-3

Keywords

Navigation