Skip to main content
Log in

Selective sulfoxidation reactions with H2O2 catalyzed by Ti-containing SBA-15 materials

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This contribution relates the behavior of Ti-SBA-15 catalysts in the sulfoxidation reaction with hydrogen peroxide under mild conditions (40–70 °C). Ti-SBA-15 samples with 1, 3 and 5 wt% of TiO2 have been prepared by grafting SBA-15 silica with Ti(OiPr)4 in ethanol followed by calcination. Due to their mesopores, the Ti-containing catalysts accommodated large molecules like methyl-phenyl-sulfide, diphenylsulfide and dibenzothiophene, which were selectively oxidized into their corresponding sulfoxides and sulfones. The turnover frequency was correlated with the amount of the tetrahedral Ti atoms in the catalyst. During the oxidation process performed in batch mode, with acetonitrile or ethanol as solvent, the catalyst topology and texture were preserved, but the nature of the Ti species suffered some changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Bellussi, M.S. Rigutto, Stud. Surf. Sci. Catal. 85, 177–213 (1994)

    Article  CAS  Google Scholar 

  2. R.A. Sheldon, I.W.C.E. Arends, H.E.B. Lempers, Catal. Today 41, 387–407 (1998)

    Article  CAS  Google Scholar 

  3. I.W.C.E. Arends, R.A. Sheldon, Appl. Catal. A 212, 175–187 (2001)

    Article  CAS  Google Scholar 

  4. M.G. Clerici, O.A. Kholdeeva (eds.), Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications (Wiley, Hoboken, 2013)

    Google Scholar 

  5. R.A. Sheldon, M. Wallau, I.W.C.E. Arends, U. Schuchardt, Acc. Chem. Res. 31, 485–493 (1998)

    Article  CAS  Google Scholar 

  6. C.W. Jones (ed.), Application of Hydrogen Peroxide and Derivatives (Royal Society of Chemistry, Cambridge, 1999)

    Google Scholar 

  7. B. Notari, Stud. Surf. Sci. Catal. 37, 413–425 (1988)

    Article  CAS  Google Scholar 

  8. M. Taramasso, G. Perego, B. Notari, US Patent 4 410, 501 (1983)

    Google Scholar 

  9. M. Moliner, A. Corma, Microporous Mesoporous Mater. 189, 31–40 (2014)

    Article  CAS  Google Scholar 

  10. O.A. Kholdeeva, Catal. Sci. Technol. 4, 1869–1889 (2014)

    Article  CAS  Google Scholar 

  11. J. Prech, Catal. Rev. Sci. Eng. 60, 71–131 (2018)

    Article  CAS  Google Scholar 

  12. M.A. Camblor, A. Corma, A. Martinez, J. Perez-Pariente, J. Chem. Soc. Chem. Commun. (1992). https://doi.org/10.1039/C39920000589

    Article  Google Scholar 

  13. Y.M. Variani, A. Rojas, S.B.C. Pergher, Microporous Mesoporous Mater. 262, 106–111 (2018)

    Article  CAS  Google Scholar 

  14. T. Blasco, A. Corma, M.T. Navarro, J.P. Pariente, J. Catal. 156, 65–74 (1995)

    Article  CAS  Google Scholar 

  15. M.S. Morey, S. O’Brien, S. Schwarz, G.D. Stucky, Chem. Mater. 12, 898–911 (2000)

    Article  CAS  Google Scholar 

  16. W.Z. Zhang, T.J. Pinnavaia, Catal. Lett. 38, 261–265 (1996)

    Article  CAS  Google Scholar 

  17. V. Hulea, F. Fajula, J. Bousquet, J. Catal. 198, 179–186 (2001)

    Article  CAS  Google Scholar 

  18. F. Bérubé, B. Nohair, F. Kleitz, S. Kaliaguine, Chem. Mater. 22, 1988–2000 (2010)

    Article  CAS  Google Scholar 

  19. E. Ito, J.A.R. Van Veen, Catal. Today 116, 446–460 (2006)

    Article  CAS  Google Scholar 

  20. H. Lü, J. Gao, Z. Jiang, Y. Yang, B. Song, C. Li, Chem. Commun. (2007). https://doi.org/10.1039/B610504A

    Article  Google Scholar 

  21. V. Hulea, P. Moreau, F. Di Renzo, J. Mol. Catal. A 111, 325–332 (1996)

    Article  CAS  Google Scholar 

  22. V. Hulea, P. Moreau, J. Mol. Catal. 113, 499–505 (1996)

    Article  CAS  Google Scholar 

  23. G. Gao, S. Cheng, Y. An, X. Si, X. Fu, Y. Liu, H. Zhang, P. Wu, M.Y. He, ChemCatChem 2, 459–466 (2010)

    Article  CAS  Google Scholar 

  24. V. Hulea, A.L. Maciuca, A.M. Cojocariu, E.E. Ciocan, E. Dumitriu, C. R. Chimie 12, 723–730 (2009)

    Article  CAS  Google Scholar 

  25. A.M. Cojocariu, P.H. Mutin, E. Dumitriu, F. Fajula, A. Vioux, V. Hulea, Chem. Commun. (2008). https://doi.org/10.1039/B811668G

    Article  Google Scholar 

  26. A.M. Cojocariu, P.H. Mutin, E. Dumitriu, A. Vioux, F. Fajula, V. Hulea, Chemosphere 77, 1065–1068 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. A.M. Cojocariu, P.H. Mutin, E. Dumitriu, F. Fajula, A. Vioux, V. Hulea, Appl. Catal. B 97, 407–413 (2010)

    Article  CAS  Google Scholar 

  28. A. Sachse, V. Hulea, K.L. Kostov, N. Marcotte, M.Y. Boltoeva, E. Belamie, B. Alonso, Chem. Commun. 48, 10648–10650 (2012)

    Article  CAS  Google Scholar 

  29. A. Sachse, V. Hulea, K.L. Kostov, E. Belamie, B. Alonso, Catal. Sci. Technol. 5, 415–427 (2015)

    Article  CAS  Google Scholar 

  30. A. Rabion, F. Fajula, J.R. Bernard, V. Hulea, Method for desulphurizing thiophene derivatives contained in fuels, US Patent 2003/0102252 A1/Jun. 5, (2003)

  31. E. Torres-García, A. Galano, G. Rodriguez-Gattorno, J. Catal. 282, 201–208 (2011)

    Article  CAS  Google Scholar 

  32. B. Pawelec, R.M. Navarro, J.M. Campos-Martin, J.L.G. Fierro, Catal. Sci. Technol. 1, 23–42 (2011)

    Article  CAS  Google Scholar 

  33. J.M. Fraile, C. Gil, J.A. Mayoral, B. Muel, L. Roldán, E. Vispe, S. Calderón, F. Puente, Appl. Catal. B 180, 680–686 (2016)

    Article  CAS  Google Scholar 

  34. T.W. Kim, M.J. Kim, F. Kleitz, M.M. Nair, R. Gillet-Nicolas, K.E. Jeong, H.J. Chae, C.U. Kim, S.Y. Jeong, ChemCatChem 4, 687–697 (2012)

    Article  CAS  Google Scholar 

  35. K.S. Cho, Y.K. Lee, Appl. Catal. B 147, 35–42 (2014)

    Article  CAS  Google Scholar 

  36. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. M. Besançon, L. Michelin, L. Josien, L. Vidal, K. Assaker, M. Bonne, B. Lebeau, J.L. Blin, New J. Chem. 40, 4386 (2016)

    Article  CAS  Google Scholar 

  38. M. Bonne, S. Pronier, F. Can, X. Courtois, S. Valange, J.-M. Tatibouët, S. Royer, P. Marécot, D. Duprez, Solid State Sci. 12, 1002–1012 (2010)

    Article  CAS  Google Scholar 

  39. Y. Belmoujahid, M. Bonne, Y. Scudeller, D. Schleich, Y. Grohens, B. Lebeau, Microporous Mesoporous Mater. 201, 124–133 (2015)

    Article  CAS  Google Scholar 

  40. F. Bonino, A. Damin, G. Ricchiardi, M. Ricci, G. Spano, R. D’Aloisio, A. Zecchina, C. Lamberti, C. Prestipino, S. Bordiga, J. Phys. Chem. B 108, 3573–3583 (2004)

    Article  CAS  Google Scholar 

  41. V. Hulea, F. Fajula, E. Dumitriu, Rev. Roum. Chim. 47, 642–650 (2002)

    Google Scholar 

  42. V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Appl. Catal. A 313, 200–206 (2006)

    Article  CAS  Google Scholar 

  43. E. Dumitriu, C. Guimon, A. Corduneanu, S. Casenave, T. Hulea, C. Chelaru, H. Martinez, V. Hulea, Catal. Today 66, 529–534 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the adsorption platform of IS2M where the gas physisorption measurements have been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasile Hulea.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 161 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrei, R.D., Cambruzzi, N., Bonne, M. et al. Selective sulfoxidation reactions with H2O2 catalyzed by Ti-containing SBA-15 materials. J Porous Mater 26, 533–539 (2019). https://doi.org/10.1007/s10934-018-0640-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-018-0640-1

Keywords

Navigation