Skip to main content
Log in

Synthesis of sulfonic SBA-15 by co-condensation and soxhlet extraction: optimization by shortening the preparation time

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Propyl sulfonic SBA-15 catalysts are of great interest in several fields of chemistry and have exhibited high activity towards numerous reactions. Nonetheless, the incorporation of these functional groups on SBA-15 silica poses several challenges. Grafting techniques may conduct to a non-uniform dispersion of the functional groups on the surface. Co-condensation of the functional precursor during the synthesis of the silica overcomes this drawback, but requires longer syntheses and it has the disadvantage that removal of surfactant cannot be done by calcination because of the thermal stability of the functional groups present on the surface. Thus, the detemplation is limited in this case to extraction by standard procedures which generally involve large amounts of solvent per gram of catalyst, long contact time and limited yield of the template removal. The aims of this work were, on the one hand, to study the reduction of the ripening time for catalysts prepared by co-condensation with sulfonic groups and, on the other hand, to develop a standard procedure which allows achieving a high yield of detemplation and optimizes the amount of solvent needed and the time required, as well as employ a commercially available solvent. Different characterization techniques allowed to conclude that the obtained materials exhibited high surface area and a good degree of mesoscopic order, comparable with materials obtained by traditional procedures. Also, a high degree of template removal was achieved and the sulfonic groups were preserved in functionalized materials. These results are relevant for a further scale-up of the catalysts production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Shamzhy, M. Opanasenko, P. Concepción, A. Martínez, Chem. Soc. Rev. 48, 1095–1149 (2019)

    Article  CAS  Google Scholar 

  2. A. Corma, Chem. Rev. 95, 559–614 (1995)

    Article  CAS  Google Scholar 

  3. A. Corma, Chem. Rev. 97, 2373–2419 (1997)

    Article  CAS  Google Scholar 

  4. D. Zhao, Y. Wan, W. Zhou, Ordered mesoporous materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)

    Book  Google Scholar 

  5. G. Mohammadi Ziarani, N. Lashgari, A. Badiei, J. Mol. Catal. A Chem. 397, 166–191 (2015)

    Article  CAS  Google Scholar 

  6. S. Rostamnia, E. Doustkhah, Tetrahedron Lett. 55, 2508–2512 (2014)

    Article  CAS  Google Scholar 

  7. S. Rostamnia, F. Pourhassan, Chin. Chem. Lett. 24, 401–403 (2013)

    Article  CAS  Google Scholar 

  8. S. Rostamnia, E. Doustkhah, Synlett 26, 1345–1347 (2015)

    Article  CAS  Google Scholar 

  9. S. Rostamnia, E. Doustkhah, J. Mol. Catal. A Chem. 411, 317–324 (2016)

    Article  CAS  Google Scholar 

  10. L.G. Tonutti, H.P. Decolatti, C.A. Querini, B.O. Dalla Costa, Microporous Mesoporous Mater. 305, 110284 (2020)

    Article  CAS  Google Scholar 

  11. L. Hermida, A.Z. Abdullah, A.R. Mohamed, J. Appl. Sci. 10, 3199–3206 (2010)

    Article  CAS  Google Scholar 

  12. E.I. Basaldella, M.S. Legnoverde, I. Jiménez-Morales, E. Rodríguez-Castellón, B.O. Dalla Costa, C.A. Querini, Adsorption 17, 631–641 (2011)

    Article  CAS  Google Scholar 

  13. S. Rostamnia, T. Rahmani, Appl. Organomet. Chem. 29, 471–474 (2015)

    Article  CAS  Google Scholar 

  14. S. Rostamnia, K. Lamei, F. Pourhassan, RSC Adv. 4, 59626–59631 (2014)

    Article  CAS  Google Scholar 

  15. S. Rostamnia, X. Liu, D. Zheng, J. Coll. Interf. Sci. 432, 86–91 (2014)

    Article  CAS  Google Scholar 

  16. S. Rostamnia, H. Golchin Hossieni, E. Doustkhah, J. Organomet. Chem. 791, 18–23 (2015)

    Article  CAS  Google Scholar 

  17. E. Doustkhah, S. Rostamnia, H.G. Hossieni, R. Luque, ChemistrySelect 2, 329–334 (2017)

    Article  CAS  Google Scholar 

  18. E. Doustkhah, H. Mohtasham, M. Hasani, Y. Ide, S. Rostamnia, N. Tsunoji, M. Hussein, Mol. Catal. 482, 110676 (2020)

    Article  CAS  Google Scholar 

  19. M.M. Ayad, N.A. Salahuddin, A.A. El-Nasr, N.L. Torad, Microporous Mesoporous Mater. 229, 166–177 (2016)

    Article  CAS  Google Scholar 

  20. A. Zebardasti, M.G. Dekamin, E. Doustkhah, M.H.N. Assadi, Inorg. Chem. 59, 11223–11227 (2020)

    Article  CAS  Google Scholar 

  21. B. Ma, L. Zhuang, S. Chen, J. Porous Mater. 23, 529–537 (2016)

    Article  CAS  Google Scholar 

  22. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279(1998), 548–552 (1979)

    Google Scholar 

  23. D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120, 6024–6036 (1998)

    Article  CAS  Google Scholar 

  24. K.W. Gallis, C.C. Landry, Adv. Mater. 13, 23–26 (2001)

    Article  CAS  Google Scholar 

  25. A. Hozumi, H. Sugimura, K. Hiraku, T. Kameyama, O. Takai, Chem. Mater. 12, 3842–3847 (2000)

    Article  CAS  Google Scholar 

  26. C.-M.M. Yang, B. Zibrowius, W. Schmidt, F. Schüth, Chem. Mater. 16, 2918–2925 (2004)

    Article  CAS  Google Scholar 

  27. A. Galarneau, H. Cambon, F. di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem. 27, 73–79 (2003)

    Article  CAS  Google Scholar 

  28. J. Li, L. Wang, T. Qi, Y. Zhou, C. Liu, J. Chu, Y. Zhang, Microporous Mesoporous Mater. 110, 442–450 (2008)

    Article  CAS  Google Scholar 

  29. D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Chem. Mater. 12, 2448–2459 (2000)

    Article  CAS  Google Scholar 

  30. M.H. Lim, A. Stein, Chem. Mater. 11, 3285–3295 (1999)

    Article  CAS  Google Scholar 

  31. L.D. White, C.P. Tripp, J. Coll. Interf. Sci. 232, 400–407 (2000)

    Article  CAS  Google Scholar 

  32. L. Mercier, T.J. Pinnavaia, Chem. Mater. 12, 188–196 (2000)

    Article  CAS  Google Scholar 

  33. V. Meynen, P. Cool, E.F.F. Vansant, Microporous Mesoporous Mater. 125, 170–223 (2009)

    Article  CAS  Google Scholar 

  34. P.F. Fulvio, S. Pikus, M. Jaroniec, J. Coll. Interf. Sci. 287, 717–720 (2005)

    Article  CAS  Google Scholar 

  35. T. Benamor, L. Vidal, B. Lebeau, C. Marichal, Microporous Mesoporous Mater. 153, 100–114 (2012)

    Article  CAS  Google Scholar 

  36. J.A. Melero, G.D. Stucky, R. van Grieken, G. Morales, J. Mater. Chem. 12, 1664–1670 (2002)

    Article  CAS  Google Scholar 

  37. E. Generalic, Croatian-English chemistry dictionary & glossary (2015), https://glossary.periodni.com

  38. Z. Zhang, J. Yin, H.J. Heeres, I. Melián-Cabrera, Microporous Mesoporous Mater. 176, 103–111 (2013)

    Article  CAS  Google Scholar 

  39. S.G. de Ávila, L.C.C. Silva, J.R. Matos, Microporous Mesoporous Mater. 234, 277–286 (2016)

    Article  Google Scholar 

  40. C.-Y.Y. Chen, H.-X.X. Li, M.E. Davis, Microporous Mater. 2, 17–26 (1993)

    Article  Google Scholar 

  41. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  42. B. Lippens, J. Catal. 4, 319–323 (1965)

    Article  CAS  Google Scholar 

  43. J.C.P. Broekhoff, J.H. de Boer, J. Catal. 9, 8–14 (1967)

    Article  CAS  Google Scholar 

  44. W.W. Lukens, P. Schmidt-Winkel, D. Zhao, J. Feng, G.D. Stucky, Langmuir 15, 5403–5409 (1999)

    Article  CAS  Google Scholar 

  45. S. Fung, C. Querini, J. Catal. 138, 240–254 (1992)

    Article  CAS  Google Scholar 

  46. T. Michałowski, M. Toporek, M. Rymanowski, Talanta 65, 1241–1253 (2005)

    Article  Google Scholar 

  47. J.C. Manayil, C.V.M.M. Inocencio, A.F. Lee, K. Wilson, Green Chem. 18, 1387–1394 (2016)

    Article  CAS  Google Scholar 

  48. D. Mauder, D. Akcakayiran, S.B. Lesnichin, G.H. Findenegg, I.G. Shenderovich, J. Phys. Chem. C 113, 19185–19192 (2009)

    Article  CAS  Google Scholar 

  49. J.A. Melero, R. van Grieken, G. Morales, Chem. Rev. 106, 3790–3812 (2006)

    Article  CAS  Google Scholar 

  50. N. García, E. Benito, J. Guzmán, P. Tiemblo, V. Morales, R.A. García, Microporous Mesoporous Mater. 106, 129–139 (2007)

    Article  Google Scholar 

  51. E. Doustkhah, H. Mohtasham, M. Farajzadeh, S. Rostamnia, Y. Wang, H. Arandiyan, M.H.N. Assadi, Microporous Mesoporous Mater. 293, 109832 (2020)

    Article  CAS  Google Scholar 

  52. R.M. Grudzien, B.E. Grabicka, M. Jaroniec, J. Mater. Chem. 16, 819–823 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are given to ANPCyT for the purchase of the SPECS multitechnique analysis instrument (PME8-2003).

Funding

Financial support was received from Agencia Nacional de Promoción Científica y Técnica (PICT 2018–3634), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2017–469), and Universidad Nacional del Litoral (CAID 2016 654 50420150100046LI).

Author information

Authors and Affiliations

Authors

Contributions

LGT performed most of the experiments and wrote the manuscript. MAM contributed to the experimental part and preparation of figures. CAQ reviewed and discussed the results, and contributed to the improvement of the manuscript contextualizing the information. BODC reviewed and discussed the results, and contributed to the improvement of the manuscript contextualizing the information. All authors reviewed the final manuscript.

Corresponding author

Correspondence to B. O. Dalla Costa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10934_2022_1321_MOESM1_ESM.docx

Supplementary file1 (DOCX 135 kb)—Additional Figures: Diagram of a Soxhlet apparatus (Figure S1), XPS wide scans (Figure S2).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonutti, L.G., Maquirriain, M.A., Querini, C.A. et al. Synthesis of sulfonic SBA-15 by co-condensation and soxhlet extraction: optimization by shortening the preparation time. J Porous Mater 30, 33–42 (2023). https://doi.org/10.1007/s10934-022-01321-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01321-2

Keywords

Navigation