Mesoporous luminescent GdF3:Tb@LaF3@SiO2 nanorods: comparative structural and optoelectronic studies

  • Anees A. Ansari


Terbium doped gadolinium fluoride (GdF3:Tb) nanorods (core-NRs) subsequently covered by inert LaF3 and silica shells to form the GdF3:Tb@LaF3@SiO2 core–shell–SiO2-NRs type structure was synthesized by polyol based co-precipitation and sol–gel process. X-ray diffraction pattern confirmed the crystal structure and grain size of the materials. FETEM, EDX and FTIR spectral studies show the successful amorphous silica surface coating surrounding the core–shell NRs. The reduction in energy band gap from core to core–shell–SiO2-NRs could be due to increase the crystalline size of the material. In comparison with core-NRs, the excitation and emission efficiency of core–shell-NRs were remarkably increased. This obvious feature is mainly attributed to the formation of the inert LaF3 layer, which effectively protected Tb3+ ion from the surrounding environment. Spectroscopic studies clearly revealed the difference between these three type products. Silica surface modified core–shell–SiO2-NRs exhibited good dispersibility along with excellent colloidal stability in aqueous and non-aqueous solvents which is the novel character of the highly photostable luminescent nanomaterials. This novel approach of core-NRs coated with passive LaF3 and silica shell has potential applications in photonic based bio-medical sciences.


GdF3 nanorods Silica shell Optical properties Thermal analysis Photoluminescence 


  1. 1.
    Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48(1), 60–103 (2009)CrossRefGoogle Scholar
  2. 2.
    C.N.R. Rao, S.R.C. Vivekchand, K. Biswas, A. Govindaraj, Dalton Trans. 34, 3728–3749 (2007)CrossRefGoogle Scholar
  3. 3.
    A.P. Alivisatos, Science 271(5251), 933–937 (1996)CrossRefGoogle Scholar
  4. 4.
    W. Zheng, D.T. Tu, P. Huang, S.Y. Zhou, Z. Chen, X.Y. Chen, Chem. Commun. 51, 4129–4143 (2015)CrossRefGoogle Scholar
  5. 5.
    F.S. Richardson, Chem. Rev. 82(5), 541–552 (1982)CrossRefGoogle Scholar
  6. 6.
    I. Hemmilä, V. Laitala, J Fluoresc. 15(4), 529–542 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Huhtinen, M. Kivelä, O. Kuronen, V. Hagren, H. Takalo, H. Tenhu, T. Lövgren, H. Härmä, Anal. Chem. 77(8), 2643–2648 (2005)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, W. Zheng, P. Huang, D. Tu, S. Zhou, M. Huang, X. Chen, Nanoscale 7(10), 4274–4290 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Kar, A. Patra, Nanoscale 4(12), 3608–3619 (2012)CrossRefGoogle Scholar
  10. 10.
    R.X. Yan, Y.D. Li, Adv. Funct. Mater. 15(5), 763–770 (2005)CrossRefGoogle Scholar
  11. 11.
    S. Sivakumar, P.R. Diamente, F.C. van Veggel, Chem. Eur. J. 12(22), 5878–5884 (2006)CrossRefGoogle Scholar
  12. 12.
    F.N. Sayed, V. Grover, V. Sudarsan, B.N. Pandey, A. Asthana, R.K. Vatsa, A.K. Tyagi, J. Colloid Interface Sci. 367(1), 161–170 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Yin, L. Zhao, L. Zhou, Z. Gu, X. Liu, G. Tian, S. Jin, L. Yan, W. Ren, G. Xing, Y. Zhao, Chem. Eur. J. 18(30), 9239–9245 (2012)CrossRefGoogle Scholar
  14. 14.
    Q. Ju, Y. Liu, D. Tu, H. Zhu, R. Li, X. Chen, Chem. Eur. J. 17(31), 8549–8554 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Lv, S. Gai, Y. Dai, N. Niu, F. He, P. Yang, ACS Appl. Mater. Interfaces 5(21), 10806–10818 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Xu, S. Gai, P. Ma, Y. Dai, G. Yang, F. He, P. Yang, J. Mater. Chem. B 2(13), 1791–1801 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Tian, H.-Y. Yang, K. Li, X. Jin, J. Mater. Chem. 22(42), 22510–22516 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Li, P. Ma, P. Yang, Z. Xu, G. Li, D. Yang, C. Peng, J. Lin, CrystEngComm 13(3), 1003–1013 (2011)CrossRefGoogle Scholar
  19. 19.
    Q. Zhao, W. Lu, N. Guo, Y. Jia, W. Lv, B. Shao, M. Jiao, H. You, Dalton Trans. 42(19), 6902–6908 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Tian, J. Tian, X. Li, B. Yu, T. Shi, Chem. Commun. 47(10), 2847–2849 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Wang, S. Su, S. Song, R. Deng, H. Zhang, CrystEngComm 14(13), 4266–4269 (2012)CrossRefGoogle Scholar
  22. 22.
    Q. Zhao, B. Shao, W. Lu, Y. Jia, W. Lv, M. Jiao, H. You, Dalton Trans. 42(43), 15482–15488 (2013)CrossRefGoogle Scholar
  23. 23.
    A.A. Ansari, J.P. Labis, J. Mater. Chem. 22(32), 16649–16656 (2012)CrossRefGoogle Scholar
  24. 24.
    A.A. Ansari, A.K. Parchur, M. Alam, A. Azzeer, Spectrochim. Acta A 131, 30–36 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Ghosh Chaudhuri, S. Paria, Chem. Rev. 112(4), 2373–2433 (2012)CrossRefGoogle Scholar
  26. 26.
    A.A. Ansari, R. Yadav, S.B. Rai, RSC Adv. 6(26), 22074–22082 (2016)CrossRefGoogle Scholar
  27. 27.
    P. Reiss, M. Protière, L. Li, Small 5(2), 154–168 (2009)CrossRefGoogle Scholar
  28. 28.
    A.A. Ansari, M. Alam, J.P. Labis, S.A. Alrokayan, G. Shafi, T.N. Hasan, N.A. Syed, A.A. Alshatwi, J. Mater. Chem. 21(48), 19310–19316 (2011)CrossRefGoogle Scholar
  29. 29.
    A.A. Ansari, S.P. Singh, N. Singh, B.D. Malhotra, Spectrochim. Acta A 86, 432–436 (2012)CrossRefGoogle Scholar
  30. 30.
    M. He, P. Huang, C. Zhang, J. Ma, R. He, D. Cui, Chem. Eur. J. 18(19), 5954–5969 (2012)CrossRefGoogle Scholar
  31. 31.
    M.N. Luwang, R.S. Ningthoujam, S.K. Srivastava, R.K. Vatsa, J. Am. Chem. Soc. 132(8), 2759–2768 (2010)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569–585 (1972)CrossRefGoogle Scholar
  33. 33.
    N. Yaiphaba, R.S. Ningthoujam, N.R. Singh, R.K. Vatsa, Eur. J. Inorg. Chem. 18, 2682–2687 (2010)CrossRefGoogle Scholar
  34. 34.
    E. Cavalli, P. Boutinaud, R. Mahiou, M. Bettinelli, P. Dorenbos, Inorg. Chem. 49(11), 4916–4921 (2010)CrossRefGoogle Scholar
  35. 35.
    T. Grzyb, M. Runowski, A. Szczeszak, S. Lis, J. Phys. Chem. C 116(32), 17188–17196 (2012)CrossRefGoogle Scholar
  36. 36.
    A.A. Ansari, A.K. Parchur, M. Alam, A. Azzeer, Mater. Chem. Phys. 147(3), 715–721 (2014)CrossRefGoogle Scholar
  37. 37.
    A.K. Parchur, A.I. Prasad, A.A. Ansari, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41(36), 11032–11045 (2012)CrossRefGoogle Scholar
  38. 38.
    T. Grzyb, M. Runowski, K. Dąbrowska, M. Giersig, S. Lis, J. Nanopart. Res. 15(10), 1–15 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Runowski, A. Ekner-Grzyb, L. Mrówczyńska, S. Balabhadra, T. Grzyb, J. Paczesny, A. Zep, S. Lis, Langmuir 30(31), 9533–9543 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations