Advertisement

Journal of Porous Materials

, Volume 25, Issue 2, pp 425–431 | Cite as

Facile syntheses of nanoporous organosilica spherical particles

  • Ryouya Hashimoto
  • Makoto Ogawa
Article

Abstract

Well-defined spherical particles of silica, containing phenyl group, with the diameter of ca. 2 microns were prepared by the co-condensation of tetraethoxysilane with phenyltriethoxysilane in basic aqueous methanol solutions of hexadecyltrimethylammonium chloride. The products were hydrophobic. The content of phenyl group was controlled by the ratio of tetraethoxysilane and phenyltriethoxysilane in the starting solution. Hexadecyltrimethylammonium was extracted with methanolic HCl to obtain nanoporous silica spherical particle containing phenyl group. The spherical particle possessed pore size of 1.8 nm and the BET surface area of 750 m2 g−1.

Keywords

Spherical particle Nanopore Particle size distribution Organosilica Co-condensation Phenyltriethoxysilane 

References

  1. 1.
    G.J.A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093–4120 (2002)CrossRefGoogle Scholar
  2. 2.
    K. Ariga, A. Vinu, Y. Yamauchi, Q.M. Ji, J.P. Hill, Nanoarchitectonics for mesoporous materials. Bull. Chem. Soc. Jpn. 85, 1–32 (2012)CrossRefGoogle Scholar
  3. 3.
    E. Ruiz-Hitzky, P. Aranda, M. Darder, M. Ogawa, Hybrid and biohybrid silicate based materials: molecular versus block-assembling bottom-up processes. Chem. Soc. Rev. 40, 801–828 (2011)CrossRefGoogle Scholar
  4. 4.
    V. Malgras, H. Ataee-Esfahani, H. Wang, H.B. Jiang, H.C. Li, K.C.C. Wu, J.H. Kim, Y. Yamauchi, Nanoarchitectures for mesoporous metals. Adv. Mater. 28, 993–1010 (2016)CrossRefGoogle Scholar
  5. 5.
    G.J. Croissant, X. Cattoën, M. Wong Chi Man, J.-O. Durand, N.M. Khashab, Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 7, 20318–20334 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Ogawa, Formation of novel oriented transparent film of layered silica-surfactant nanocomposites. J. Am. Chem. Soc. 116, 7941–7942 (1994)CrossRefGoogle Scholar
  7. 7.
    M. Ogawa, A simple sol–gel route for the preparation of silica-surfactant mesostructured materials. Chem. Commun. 10, 1149–1150 (1996)CrossRefGoogle Scholar
  8. 8.
    M. Ogawa, Preparation of silica-dialkyldimethylammonium salts nanocomposites. Langmuir, 13, 1853–1855 (1997)CrossRefGoogle Scholar
  9. 9.
    M. Ogawa, T. Igarashi, K. Kuroda, Preparation of transparent silica-surfactant nanocomposite films with controlled microstructures. Bull. Chem. Soc. Jpn. 70, 2833–2837 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Ogawa, H. Ishikawa, T. Kikuchi, Preparation of transparent mesoporous silica films by a rapid solvent evaporation method. J. Mater. Chem. 8, 1783–1786 (1998)CrossRefGoogle Scholar
  11. 11.
    P.J. Bruinsma, A.Y. Kim, J. Liu, S. Baskaran, Mesoporous silica synthesized by solvent evaporation: spun fibers and spray-dried hollow spheres. Chem. Mater. 9, 2507–2511 (1997)CrossRefGoogle Scholar
  12. 12.
    M.T. Anderson, J.E. Martin, J.G. Odinek, P.P. Newcomer, J.P. Wilcoxon, Monolithic periodic mesoporous silica gels. Microporous Mesoporous Mater. 10, 13–18 (1997)CrossRefGoogle Scholar
  13. 13.
    P.T. Tanev, Y. Liang, T.J. Pinnavaia, Assembly of mesoporous lamellar silicas with hierarchical particle architectures. J. Am. Chem. Soc. 119, 86–89 (1997)CrossRefGoogle Scholar
  14. 14.
    H.-P. Lin, C.-Y. Mou, Tubules-within-A-tubule hierarchical order of mesoporous molecular sieves in MCM-41. Science 273, 765–768 (1996)CrossRefGoogle Scholar
  15. 15.
    H.-P. Lin, Y.-R. Chen, C.-Y. Mou, Hierarchical order in hollow spheres of mesoporous silicates. Chem. Mater. 10, 3772–3775 (1998)CrossRefGoogle Scholar
  16. 16.
    H. Imai, N. Takahashi, R. Tamura, H. Hirashima, Formation of whiskers of silicate mesostructures. Langmuir 17, 17–20 (2001)CrossRefGoogle Scholar
  17. 17.
    H. Yang, N. Coombs, G.A. Ozin, Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386, 692–695 (1997)CrossRefGoogle Scholar
  18. 18.
    S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004)CrossRefGoogle Scholar
  19. 19.
    Y. Sakamoto, M. Kaneda, O. Terasaki, D.Y. Zhao, J.M. Kim, G.D. Stucky, H.J. Shin, R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 408, 449–453 (2000)CrossRefGoogle Scholar
  20. 20.
    Q. Huo, J. Feng, F. Schüth, G.D. Stucky, Preparation of hard mesoporous silica spheres. Chem. Mater. 9, 14–17 (1997)CrossRefGoogle Scholar
  21. 21.
    S.M. Yang, N. Coombs, G.A. Ozin, Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals. Adv. Mater. 12, 1940–1943 (2000)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, H. Fan, A. Stump, L.T. Ward, T. Rieker, C.J. Brinker, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999)CrossRefGoogle Scholar
  23. 23.
    W. Stöber, A. Fink, E. Bohn, Controlled growth of monodispersed silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  24. 24.
    K. Schumacher, M. Grün, K.K. Unger, Novel synthesis of spherical MCM-48. Microporous Mesoporous Mater. 27, 201–206 (1999)CrossRefGoogle Scholar
  25. 25.
    R.I. Nooney, D. Thirunavukkarasu, R. Chen, Y. Josephs, A.E. Ostafin, Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem. Mater. 14, 4721–4728 (2002)CrossRefGoogle Scholar
  26. 26.
    K. Yano, N. Suzuki, Y. Akimoto, Y. Fukushima, Synthesis of mono-dispersed mesoporous silica spheres with hexagonal symmetry. Bull. Chem. Soc. Jpn. 75, 1977–1982 (2002)CrossRefGoogle Scholar
  27. 27.
    N. Shimura, M. Ogawa, Growth of nanoporous silica spherical particles by the stober method combined with supermolecular templating approach. Bull. Chem. Soc. Jpn. 78, 1154–1159 (2005)CrossRefGoogle Scholar
  28. 28.
    N. Shimura, M. Ogawa, Preparation of surfactant template nanoporous silica spherical particles by the stober method, effect of solvent composition on the particle size. J. Mater. Sci. 42, 5299–5306 (2007)CrossRefGoogle Scholar
  29. 29.
    K. Kambara, N. Shimura, M. Ogawa, Larger scale syntheses of surfactant-templated nanoporous silica spherical particles by the stöber method. J. Ceram. Soc. Jpn. 115, 315–318 (2007)CrossRefGoogle Scholar
  30. 30.
    S.H. Wu, C.Y. Mou, H.P. Lin, Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42, 3862–3875 (2013)CrossRefGoogle Scholar
  31. 31.
    K. Shiba, N. Shimura, M. Ogawa, Mesoporous silica spherical particles. J. Nanosci. Nanotech. 13, 2483–2494 (2013)CrossRefGoogle Scholar
  32. 32.
    M. Etienne, A. Lebeau, B. Walcarius, Organically-modified mesoporous silica spheres with MCM-41 architecture. New J. Chem. 26, 384–386 (2002)CrossRefGoogle Scholar
  33. 33.
    S. Huh, J.W. Wiench, J.C. Yoo, M. Pruski, V.S.Y. Lin, Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem. Mater. 15, 4247–4250 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Sadasivan, D. Khushalani, S. Mann, Synthesis and shape modification of organo-functionalised silica nanoparticles with ordered mesostructured interiors. J. Mater. Chem. 13, 1023–1027 (2003)CrossRefGoogle Scholar
  35. 35.
    C.Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V.S.Y. Lin, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459 (2003)CrossRefGoogle Scholar
  36. 36.
    T. Yokoi, H. Yoshitake, T. Yamada, Y. Kubota, T. Tatsumi, Amino-functionalized mesoporous silica synthesized by an anionic surfactant templating route. J. Mater. Chem. 16, 1125–1135 (2006)CrossRefGoogle Scholar
  37. 37.
    D.J. Kim, J.S. Chung, W.S. Ahn, G.W. Kang, W.J. Cheong, Morphology control of organic–inorganic hybrid mesoporous silica by microwave heating. Chem. Lett. 33, 422–423 (2004)CrossRefGoogle Scholar
  38. 38.
    M.P. Kapoor, S. Inagaki, Synthesis of phenylene bridged mesoporous silsesquioxanes with spherical morphology in ammonia solution. Chem. Lett. 33, 88–89 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Wang, F. Li, H. Zhou, P. Sun, D. Ding, T. Chen, Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels. Chem. Mater. 21, 612–620 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Walcarius, S. Sayen, C. Gérardin, F. Hamdoune, L. Rodehüser, Dipeptide-functionalized mesoporous silica spheres. Colloids Surf. A 234, 145–151 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  42. 42.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951)CrossRefGoogle Scholar
  43. 43.
    M. Ogawa, Photoprocesses in mesoporous silicas prepared by supramolecular templating approaches. J. Photochem. Photobiol. C Photochem. Rev. 3, 129–146 (2002)CrossRefGoogle Scholar
  44. 44.
    M. Ogawa, K. Saito, M. Sohmiya, Possible roles of the spatial distribution of organic guest species in mesoporous silicas to control the properties of the hybrids. Eur. J. Inorg. Chem. 2015, 1126–1136 (2015)CrossRefGoogle Scholar
  45. 45.
    M. Sohmiya, K. Saito, M. Ogawa, Host-guest chemistry of mesoporous silicas; precise design of location and orientation of molecular guests in mesopore. Sci. Tech. Adv. Mater. 16, 054201 (2015)CrossRefGoogle Scholar
  46. 46.
    U. Ciesla, F. Schuth, Ordered mesoporous materials. Micropor. Mesopor. Mater. 27, 131–149 (1999)CrossRefGoogle Scholar
  47. 47.
    B.J. Scott, G. Wirnsberger, G.D. Stucky, Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13, 3140–3150 (2001)CrossRefGoogle Scholar
  48. 48.
    A. Taguchi, F. Schuth, Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 77, 1–45 (2005)CrossRefGoogle Scholar
  49. 49.
    A. Stein, Advances in microporous and mesoporous solids. Adv. Mater. 15, 763–775 (2003)CrossRefGoogle Scholar
  50. 50.
    M. Barboiu, Constitutional hybrid materials—toward selection of functions. Eur. J. Inorg. Chem. 2015, 1112–1125 (2015)CrossRefGoogle Scholar
  51. 51.
    T.H. Tran-Thi, R. Dagnelie, S. Crunaire, L. Nicole, Optical chemical sensors based on hybrid organic–inorganic sol–gel nanoreactors. Chem. Soc. Rev. 40, 621–639 (2011)CrossRefGoogle Scholar
  52. 52.
    B. Lebeau, P. Innocenzi, Hybrid materials for optics and photonics. Chem. Soc. Rev. 40, 886–906 (2011)CrossRefGoogle Scholar
  53. 53.
    G.J. Soler-Illia, O. Azzaroni, Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 40, 1107–1150 (2011)CrossRefGoogle Scholar
  54. 54.
    N. Mizoshita, T. Tani, S. Inagaki, Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 40, 789–800 (2011)CrossRefGoogle Scholar
  55. 55.
    K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, J.P. Hill, Enzyme nanoarchitectonics: organization and device application. Chem. Soc. Rev. 42, 6322–6345 (2013)CrossRefGoogle Scholar
  56. 56.
    M. Ogawa, N. Shimura, A. Ayral, Deposition of thin nanoporous silica layer on solid surfaces. Chem. Mater. 18, 1715–1718 (2006)CrossRefGoogle Scholar
  57. 57.
    N. Shimura, M. Ogawa, Deposition of thin mesoporous silica films on glass substrates from basic solution. J. Colloid Interface Sci. 303, 250–255 (2006)CrossRefGoogle Scholar
  58. 58.
    R. Hashimoto, Y. Tsuji, M. Ogawa, The syntheses of thin layers of organosilica by the co-condensation of tetraethoxysilane and phenyltriethoxysilane in the presence of cationic surfactant. J. Mater. Sci. 47, 2195–2200 (2012)CrossRefGoogle Scholar
  59. 59.
    R. Kato, N. Shimura, M. Ogawa, Contorolled photocatalytic ability of titanium dioxide particle by coating with nanoporous silica. Chem. Lett. 37, 76–77 (2008)CrossRefGoogle Scholar
  60. 60.
    K.J. Nakamura, Y. Ide, M. Ogawa, Molecular recognitive photocatalytic decomposition on mesoporous silica coated TiO2 particle. Mater. Lett. 65, 24–26 (2011)CrossRefGoogle Scholar
  61. 61.
    Y. Ide, Y. Koike, M. Ogawa, Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates. J. Colloid Interface Sci. 358, 245–251 (2011)CrossRefGoogle Scholar
  62. 62.
    M. Ogawa, D. Naito, N. Shimura, Preparation of ZnO–core/nanoporous silica-shell particle and the conversion to hollow nanoporous silica particle. Chem. Lett. 36, 462–463 (2007)CrossRefGoogle Scholar
  63. 63.
    N. Shimura, M. Ogawa, Preparation of hexagonal platy particle of nanoporous silica using hydrotalcite particle as morphology template. J. Colloid Interface Sci. 312, 311–316 (2007)CrossRefGoogle Scholar
  64. 64.
    P.A. Williamson, P.J. Blower, M.A. Green, Synthesis of porous hollow silica nanostructures using hydroxyapatite nanoparticle templates. Chem. Commun. 47, 1568–1570 (2011)CrossRefGoogle Scholar
  65. 65.
    Y. Chen, H. Chen, Y. Sun, Y. Zheng, D. Zeng, F. Li, S. Zhang, X. Wang, K. Zhang, M. Ma, Q. He, L. Zhang, J. Shi, Multifunctional mesoporous composite nanocapsules for highly efficient MRI-guided high-intensity focused ultrasound cancer surgery. Angew. Chem. Int. Ed. 50, 12505–12509 (2011)CrossRefGoogle Scholar
  66. 66.
    J.P. Yang, D.K. Shen, L. Zhou, W. Li, X.M. Li, C. Yao, R. Wang, A.M. El-Toni, F. Zhang, D. Zhao, Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 25, 3030–3037 (2013)CrossRefGoogle Scholar
  67. 67.
    Z.H. Bai, R. Chen, P. Si, Y.J. Huang, H.D. Sun, D.H. Kim, Fluorescent pH sensor based on Ag@SiO2 core–shell nanoparticle. ACS Appl. Mater. Interfaces 5, 5856–5860 (2013)CrossRefGoogle Scholar
  68. 68.
    Y. Song, X. Cao, Y. Guo, P. Chen, Q. Zhao, G. Shen, Fabrication of mesoporous CdTe/ZnO@SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions. Chem. Mater. 21, 68–77 (2009)CrossRefGoogle Scholar
  69. 69.
    G.Q. Wang, Z.P. Chen, L.X. Chen, Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3, 1756–1759 (2011)CrossRefGoogle Scholar
  70. 70.
    L. Zhang, W.C. Geng, S.Z. Qiao, H.J. Zheng, G.Q. Lu, Z.F. Yan, Fabrication and biosensing with CNT/aligned mesostructured silica core–shell nanowires. ACS Appl. Mater. Interface 2, 2767–2772 (2010)CrossRefGoogle Scholar
  71. 71.
    J. Gamonchuang, N. Khaorapapong, M. Ogawa, The effect of alcohol type on the thickness of silica layer of Co3O4@SiO2 core-shell particle. Colloids Surf. A 511, 39–46 (2016)CrossRefGoogle Scholar
  72. 72.
    K. Shiba, M. Ogawa, Mesoporous silica coated silica–titania spherical particles; from impregnation to core–shell formation. Dalton Trans. 45, 18742–18749 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Graduate School of Creative Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.School of Energy Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)WangchanThailand

Personalised recommendations