Skip to main content
Log in

Fabrication and optical properties of the Si honeycomb structure via colloidal monolayer template

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

We use solution immersion method to prepare the SiO2 network structure. A single-layer PS sphere template was immersed in SiO2 precursor solution for a certain period of time. Filter paper was used to absorb the residual liquid, and then the PS nanospheres were removed by high temperature-annealing to form SiO2 network structure. The Si honeycomb structure was formed on the SiO2 network structure by chemical vapor deposition method. The longer growth time caused the smaller sizes of the Si apertures and produced various quantum size effects. When the growth time is 15 min, the thermal conductivity of the sample is the lowest. The heat conduction behavior of the 15 min sample is similar to that of a phonon crystal due to the aperture size of the sample is almost the same as the mean free path of phonons. Scattering at the interface of the isolated honeycomb microstructures also contributed to the low thermal conductivity. The position and number of the reflection peak of the sample can be controlled by the deposition time. The luminescence properties of the samples are greatly influenced by the surface topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.A. Lai, T.M. Hymel, V.K. Narasimhan, Y. Cui, Schottky barrier catalysis mechanism in metal-assisted chemical etching of silicon. ACS Appl. Mater. Interfaces 8(14), 8875–8879 (2016)

    Article  CAS  Google Scholar 

  2. Y. Wei, M. Hu, W. Yan, D. Wang, L. Yuan, Y.X. Qin, Hydrothermal synthesis porous silicon/tungsten oxide nanorods composites and their gas-sensing properties to NO2 at room temperature. Appl. Surf. Sci. 353, 79–86 (2015)

    Article  CAS  Google Scholar 

  3. I.A. Levitsky, Porous silicon structures as optical gas sensors. Sensors 15(8), 19968–19991 (2015)

    Article  CAS  Google Scholar 

  4. L. Passoni, L. Criante, F. Fumagalli, F. Scotognella, G. Lanzani, F. Di. Fonzo, Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano 8(12), 12167–12174 (2014)

    Article  CAS  Google Scholar 

  5. M. Lajvardi, H. Eshghi, M.E. Ghazi, M. Izadifard, A. Goodarzi, Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching, Mat Sci Semicon Proc 40, 556–563 (2015)

    Article  CAS  Google Scholar 

  6. T. Bitzer, Honeycomb Technology (Chapman and Hall, London, 1997)

    Book  Google Scholar 

  7. C. Qi, C.C. Striemer, T.R. Gaborski, J.L. Mcgrath, P.M. Fauchet, Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes. Nanotechnology 26(5), 055706 (2015)

    Article  Google Scholar 

  8. Z. Zhang, Z.M. Xu, T.Y. Sun, H.F. Xu, C.H. Chen, Study on porous silicon template for nanoimprint lithography. Acta Phys Sin. 63(1), 018102-1–018102-8 (2014)

    Google Scholar 

  9. Y. Xia, J.A. Rogers, K.E. Paul, G.M. Whitesides, Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99, 1823–1848 (1999)

    Article  CAS  Google Scholar 

  10. B.D. Smith, J.J. Patil, N. Ferralis, J.C. Grossman, Catalyst self-assembly for scalable patterning of Sub 10 nm ultrahigh aspect ratio nanopores in silicon. ACS Appl. Mater. Interfaces 8(12), 8043–8049 (2016)

    Article  CAS  Google Scholar 

  11. K.W. Tan, B. Jung, J.G. Werner, E.R. Rhoades, M.O. Thompson, U. Wiesner, Transient laser heating induced hierarchical porous structures from block copolymer-directed self-assembly. Science 349(6243), 54–58 (2015)

    Article  CAS  Google Scholar 

  12. F. Burmeister, C. Schäfle, B. Keilhofer, C. Bechinger, J. Boneberg, P. Leiderer, From mesoscopic to nanoscopic surface structures: lithography with colloid monolayers. Adv Mater. 10(6), 495–497 (1998)

    Article  CAS  Google Scholar 

  13. C.W. Kuo, J. Shiu, Y.H. Cho, P. Chen, Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks. Adv. Mater. 15, 1065–1068 (2003)

    Article  CAS  Google Scholar 

  14. J. Rybczynski, U. Ebels, M. Giersig, Large-scale, 2D arrays of magnetic nanoparticles. Colloids surf. A 219(1–3), 1–6 (2003)

    Article  CAS  Google Scholar 

  15. Z. Zang, A. Nakamura, J. Temmyo, Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Mater. Lett. 92, 188–191 (2013)

    Article  CAS  Google Scholar 

  16. Z. Zang, A. Nakamura, J. Temmyo, Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448–11456 (2013)

    Article  CAS  Google Scholar 

  17. S. F. Leung, M. Yu, Q. Lin, K. Kwon, K. L. Ching, L. Gu, K. Yu, Z. Fan, Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano. Lett. 12, 3682–3689 (2012)

    Article  CAS  Google Scholar 

  18. Y. Wu, X.X. Zhai, C.M. Zhen, X.W. Liu, L. Ma, D.L. Hou. A method for preparation of ordered porous silicon based on a 2D SiO2 template. Chin. Phys. Lett. 33(5), 058103 (2016)

    Article  Google Scholar 

  19. Z. G. Li, Y. Gu, Y. P. Li, S. S. Feng, Z. R. Yang, Y. H. Zhang, H. B. Zeng, Hemi-shell arrays harvesting ultra-broadband light. Adv. Optical Mater. 3(7), 931–936 (2015)

    Article  CAS  Google Scholar 

  20. M. Nomura, J. Nakagawa, Y. Kage, J. Maire, D. Moser, O. Paul, Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures. Appl. Phys. Lett. 106, 143102 (2015)

    Article  Google Scholar 

  21. S. Alaie, D.F. Goettler, M. Su, Z.C. Leseman, C.M. Reinke, I. El-Kady. Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature. Nat. Commun. 6, 7228 (2015)

    Article  CAS  Google Scholar 

  22. J.Y. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P.D. Yang, Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010)

    Article  CAS  Google Scholar 

  23. X. Wang, Y. Wu, X.W. Liu, J.Y. Chen, C.M. Zhen, L. Ma, D.L. Hou, A template-based method for preparing ordered porous silicon. J. Porous Mater. 22, 1431–1435 (2015)

    Article  CAS  Google Scholar 

  24. X. Wang, C.M. Zhen, X.W. Liu, X.M. Liu, L. Ma, C.F. Pan, D.L. Hou, A new hole-bridge structure based on a SiO2 nanoarray and its ferromagnetism. Colloids Surf. A 446, 151–155 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 10804026 and 11504247), Natural Science Foundation of Hebei Province (A2013205101 and A2014205051), Hebei talent engineering (A201400119), and Graduate innovation support program (sj2016022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congmian Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, P., Zhen, C. et al. Fabrication and optical properties of the Si honeycomb structure via colloidal monolayer template. J Porous Mater 25, 23–28 (2018). https://doi.org/10.1007/s10934-017-0416-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0416-z

Keywords

Navigation