Skip to main content

Advertisement

Log in

Synthesis of iron substituted zeolite with Na-P1 framework

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Zeolites with substitution by transition metals are expected to have unique catalytic properties in addition to common cation exchange abilities, but studies on the synthesis of iron-substituted zeolites with a greater cation exchange capacity (CEC) are very few. We hydrothermally synthesized iron-substituted Na-P1 type zeolites having CEC values of >300 cmolc kg−1 with iron content of up to 90 cmolc kg−1 with changing the addition of iron. Most of the iron in the products was concluded to be incorporated into the structure of Na-P1 by substituting aluminum, because measured CEC value and the content of sodium (exchangeable cation) nearly coincided with the sum of aluminum and iron contents in each product. In addition, UV–Visible diffuse reflectance spectra of the products revealed characteristic bands of isolated tetrahedral iron species and Fourier Transform Infrared spectroscopy (FT-IR) results indicated the existence of Si-O-Fe bonds in the products. These results confirmed the substitution of iron in the framework of Na-P1 by a hydrothermal synthesis in a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.E. Davis, Microporous Mesoporous. Mater. 21, 173 (1998)

    Article  CAS  Google Scholar 

  2. J. Weitkamp, Solid State Ionics 131, 175 (2000)

    Article  CAS  Google Scholar 

  3. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33(11), 2469 (1999)

    Article  CAS  Google Scholar 

  4. E. Erdem, N. Karapinar, R. Donat, J. Colloid Interf. Sci. 280, 309 (2004)

    Article  CAS  Google Scholar 

  5. L.G.A. van de Water, J.C. van der Waal, J.C. Jansen, M. Cadoni, L. Marchese, T. Maschmeyer, J. Phys. Chem. B 107, 10423 (2003)

    Article  Google Scholar 

  6. R. Fricke, H. Kosslick, G. Lischke, M. Richter, Chem. Rev. 100, 2303 (2000)

    Article  CAS  Google Scholar 

  7. P. Ratnasamy, R. Kumar, Catal. Today 9(4), 329 (1991)

    Article  Google Scholar 

  8. M. Tamura, W. Chaikittisilp, T. Yokoi, T. Okubo, Microporous Mesoporous. Mater. 112, 202 (2008)

    Article  CAS  Google Scholar 

  9. G. Centi, S. Perathoner, F. Trifiró, A. Aboukais, C.F. Aïssi, M. Guelton, J. Phys. Chem-US 96, 2617 (1992)

    Article  CAS  Google Scholar 

  10. K. Na, C. Jo, J. Kim, W.S. Ahn, R. Ryoo, ACS Catal. 1, 901 (2011)

    Article  CAS  Google Scholar 

  11. K. Chalupka, C. Thomas, Y. Millot, F. Averseng, S. Dzwigaj, J. Catal. 305, 46 (2013)

    Article  CAS  Google Scholar 

  12. J.H. Yun, R.F. Lobo, J. Catal. 312, 263 (2014)

    Article  CAS  Google Scholar 

  13. A. Ribera, I.W.C.E. Arends, S. de Vries, J. Pérez-Ramírez, R.A. Sheldon, J. Catal. 195, 287 (2000)

    Article  CAS  Google Scholar 

  14. E.J.M. Hensen, Q. Zhu, R.A.J. Janssen, P.C.M.M. Magusin, P.J. Kooyman, R.A. van Santen, J. Catal. 233, 123 (2005)

    Article  CAS  Google Scholar 

  15. R. Szostak, T.L. Thomas, J. Chem. Soc., Chem. Commun. 2, 113 (1986)

    Article  Google Scholar 

  16. K. Katsuki, S. Yoneoka, N. Mori, M. Hasegawa, Y. Yamamoto, Y. Yoshino, J. Porous Mater. 15, 35 (2008)

    Article  CAS  Google Scholar 

  17. C.V.A. Duke, K. Latham, C.D. Williams, Zeolites 15, 213 (1995)

    Article  CAS  Google Scholar 

  18. P. Ratnasamy, A.N. Kotasthane, V.P. Shiralkar, A. Thangaraj, S. Ganapathy, in ACS Symposium Series 398, ed. by M.L. Occelli, H.E. Robson (American Chemical Society, Washington, D.C., 1989), p. 405

    Google Scholar 

  19. R. Kumar, A. Raj, S.B. Kumar, P. Ratnasamy, Stud. Surf. Sci. Catal. 84, 109 (1994)

    Article  CAS  Google Scholar 

  20. S. Hansen, Acta Crystallogr. C 46, 1361 (1990)

    Article  Google Scholar 

  21. U. Håkansson, L. Fälth, Acta Crystallogr. C 46, 1363 (1990)

    Article  Google Scholar 

  22. B.R. Albert, A.K. Cheetham, J.A. Stuart, C.J. Adams, Microporous Mesoporous. Mater. 21, 133 (1998)

    Article  CAS  Google Scholar 

  23. P. Sharma, J.-S. Song, M.H. Han, C.H. Cho, Sci. Rep. (2016). doi:10.1038/srep22734

    Google Scholar 

  24. M. Maldonado, M.D. Oleksiak, S. Chinta, J.D. Rimer, J. Am. Chem. Soc. 135, 2641 (2013)

    Article  CAS  Google Scholar 

  25. M.L. Jackson, Soil Chemical Analysis Advanced Course (University of Wisconsin, Madison, 1956), pp. 47–58

    Google Scholar 

  26. K. Katsuki, M. Okamoto, E. Ichikawa, A. Iwashina, S. Koike, Y. Yamamoto, T. Takeuchi, Y. Yoshino, Nippon Kagaku Kaishi 9, 689 (1995) (Japanese)

    Article  Google Scholar 

  27. Ch. Baerlocher, W.M. Meier, Z. Kristallogr. Cryst. Mater. 135, 339 (1972)

    CAS  Google Scholar 

  28. Y.S. Ko, W.S. Ahn, Microporous Mater., 9, 131 (1997)

    Article  CAS  Google Scholar 

  29. S. Shevade, R.K. Ahedi, A.N. Kotasthane, Catal. Lett. 49, 69 (1997)

    Article  CAS  Google Scholar 

  30. P. Wu, T. Komatsu, T. Yashima, Microporous Mesoporous. Mater. 20, 139 (1998)

    Article  CAS  Google Scholar 

  31. D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994)

    Article  CAS  Google Scholar 

  32. S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello, A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158, 486 (1996)

    Article  CAS  Google Scholar 

  33. J. Pérez-Ramírez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, J. Catal. 232, 318 (2005)

    Article  Google Scholar 

  34. U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory (Wiley-VCH, Weinheim, 2000), pp. 67–134

    Book  Google Scholar 

  35. E.M. Flanigen, H. Khatami, H.A. Szymanski, in Advance in Chemistry Series 101, ed. by E.M. Flanigen, L.B. Sand (American Chemical Society, Washington, D.C., 1971), p. 201

    Google Scholar 

  36. R. Szostak, V. Nair, T.L. Thomas, J. Chem. Soc., Faraday Trans. 1 83, 487 (1987)

    Article  CAS  Google Scholar 

  37. P. Castaldi, L. Santona, C. Cozza, V. Giuliano, C. Abbruzzese, V. Nastro, P. Melis, J. Mol. Struct. 734, 99 (2005)

    Article  CAS  Google Scholar 

  38. M. Salavati-Niasari, J. Incl. Phenom. Macrocycl. 65, 317 (2009) doi:10.1007/s10847-009-9585-y

    Article  CAS  Google Scholar 

  39. A. Nezamzadeh-Ejhieh, S. Hushmandrad Appl. Catal. A 388, 149 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Associate Professor Dr. Satoshi Mitsunobu for providing of the iron oxides and Mr. Takeshi Kiyoi at the Division of Analytical Bio-medicine the Advanced Research Support Center, Ehime University for his technical assistance of SEM observation. Additionally this study was supported by Ehime Institute of Industrial Technology for using UV–Visible spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asami Kumon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumon, A., Abidin, Z. & Matsue, N. Synthesis of iron substituted zeolite with Na-P1 framework. J Porous Mater 24, 1061–1068 (2017). https://doi.org/10.1007/s10934-016-0346-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0346-1

Keywords

Navigation