Skip to main content
Log in

Hydrothermal/Alkali Fusion Synthesis of Zeolite NaA and NaX from Pyrophyllite Mineral Clay

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research, hydrothermal/alkali fusion synthesis of zeolite NaX and NaA was reported by using pyrophyllite as the source of Si and Al. Characterization of synthesized compounds was carried out by X-ray diffraction, X-ray fluorescence, FESEM (field emission scanning electron microscopy), and BET (Brunauer–Emmett–Teller) analyses. To activate pyrophyllite, two methods including calcination and alkali fusion were employed. Calcination of pyrophyllite resulted in the dehydroxylation process. Four batch formulas were set to the synthesis of zeolite structure from dehydroxylated pyrophyllite which resulted in producing sodalite zeolite. Results showed that alkali fusion is an effective method for the activation of pyrophyllite. Zeolite NaA with a crystallinity of about 56% was successfully synthesized at 90 °C with an average particle size around 0.085 μm. In the case of zeolite NaX, the synthesis was performed at 120 °C while the particle size is around 1.73 μm. However, it was found that for producing a high crystallinity of zeolite NaX, longer crystallization time is needed. BET results revealed that the specific surface area of the synthesized zeolite NaX is around 12 m2/gr with an average pore volume of 0.054 cm3/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahadi A, Rostamnia S, Panahi P, Wilson L D, Kong Q, An Z, and Shokouhimehr M, Catalysts 9 (2019) 140.

    Article  Google Scholar 

  2. Kim A, Rafiaei S M, Abdolhosseini S, and Shokouhimehr M, Energy Environ Focus 4 (2015) 18.

    Article  Google Scholar 

  3. Nasrollahzadeh M, Baran T, Baran N Y, Sajjadi M, Tahsili M, and Shokouhimehr M, Sep Purif Technol 239 (2020) 116542.

    Article  CAS  Google Scholar 

  4. Rafiaei S M, Ceram Int 48 (2022) 14913.

    Article  CAS  Google Scholar 

  5. Habibi M K, Rafiaei S M, Alhaji A, and Zare M, J Mol Struct 1228 (2021) 129769.

    Article  CAS  Google Scholar 

  6. Habibi M K, Rafiaei S M, Alhaji A, and Zare M, J Alloys Compd 890 (2021) 161901.

    Article  Google Scholar 

  7. Khaleque A, Alam M M, Hoque M, Mondal S, Haider J B, Xu B, Johir M, Karmakar A K, Zhou J, and Ahmed M B, Environ Adv 2 (2020) 100019.

    Article  Google Scholar 

  8. Sajjadi M, Nasrollahzadeh M, Ghafuri H, Baran T, Orooji Y, Baran N Y, and Shokouhimehr M, Int J Biol Macromol 209 (2022) 1573.

    Article  CAS  PubMed  Google Scholar 

  9. Salmankhani A, Mousavi Khadem S S, Seidi F, Mashhadzadeh A H, Zarrintaj P, Habibzadeh S, Mohaddespour A, Rabiee N, Lima E C, Shokouhimehr M, Varma R S, and Saeb M, Chem Pap 75 (2021) 6217.

    Article  CAS  Google Scholar 

  10. Moshoeshoe M, Nadiye-Tabbiruka M S, and Obuseng V, Am J Mater Sci 7 (2017) 196.

    Google Scholar 

  11. Kulprathipanja S, Zeolites in Industrial Separation and Catalysis, John Wiley & Sons (2010).

    Book  Google Scholar 

  12. Setthaya N, Chindaprasirt P, and Pimraksa K, Preparation of zeolite nanocrystals via hydrothermal and solvothermal synthesis using of rice husk ash and metakaolin, p 242

  13. Tsujiguchi M, Kobashi T, Oki M, Utsumi Y, Kakimori N, and Nakahira A, J Asian Ceram Soc 2 (2014) 27.

    Article  Google Scholar 

  14. Sapawe N, Jalil A, Triwahyono S, Shah M, Jusoh R, Salleh N, Hameed B, and Karim A, Chem Eng J 229 (2013) 388.

    Article  CAS  Google Scholar 

  15. El-Naggar M, El-Kamash A, El-Dessouky M, and Ghonaim A, J Hazard Mater 154 (2008) 963.

    Article  CAS  PubMed  Google Scholar 

  16. Gaidoumi A E, Benabdallah A C, Bali B E, and Kherbeche A, Arab J Sci Eng 43 (2018) 191.

    Article  Google Scholar 

  17. Qiang Z, Shen X, Guo M, Cheng F, and Zhang M, Microporous Mesoporous Mater 287 (2019) 77–84.

    Article  CAS  Google Scholar 

  18. Garshasbi V, Jahangiri M, and Anbia M, Appl Surf Sci 393 (2017) 225.

    Article  ADS  CAS  Google Scholar 

  19. Kim W, Chae W, Kwon S, Kim K, Lee H, and Kim S, Mater Trans 55 (2014) 1488.

    Article  CAS  Google Scholar 

  20. Li G, Zeng J, Luo J, Liu M, Jiang T, and Qiu G, Appl Clay Sci 99 (2014) 282.

    Article  CAS  Google Scholar 

  21. Ríos C A, Williams C D, and Castellanos O M, Ing Compet 14 (2012) 125.

    Google Scholar 

  22. Chandrasekhar S, and Pramada P, J Porous Mater 6 (1999) 283.

    Article  CAS  Google Scholar 

  23. Khalifa A Z, Cizer Ö, Pontikes Y, Heath A, Patureau P, Bernal S A, and Marsh A T, Cem Concr Res 132 (2020) 106050.

    Article  CAS  Google Scholar 

  24. Zhang Z, and Wang L, J Chin Ceram Soc 26 (1998) 618.

    CAS  Google Scholar 

  25. Johnson E B G, and Arshad S E, Appl Clay Sci 97–98 (2014) 215.

    Article  Google Scholar 

  26. Zhang X, Tang D, Zhang M, and Yang R, Powder Technol 235 (2013) 322.

    Article  CAS  Google Scholar 

  27. Ma Y, Yan C, Alshameri A, Qiu X, and Zhou C, Adv Powder Technol 25 (2014) 495.

    Article  CAS  Google Scholar 

  28. Ghodrati M, Rafiaei S M, and Tayebi L, J Mech Behav Biomed Mater 145 (2023) 106001.

    Article  CAS  PubMed  Google Scholar 

  29. Schomburg J, Thermochim Acta 93 (1985) 521.

    Article  CAS  Google Scholar 

  30. Abdullahi T, Harun Z, and Othman M H D, Adv Powder Technol 28 (2017) 1827.

    Article  CAS  Google Scholar 

  31. Sanchez-Soto P J, and Perez-Rodriguez J L, Thermochim Acta 138 (1989) 267.

    Article  CAS  Google Scholar 

  32. Chen Z, Qing H, Zhou K, Sun D, and Wu R, Prog Mater Sci 108 (2020) 100618.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahdi Rafiaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, M.K., Rafiaei, S.M. Hydrothermal/Alkali Fusion Synthesis of Zeolite NaA and NaX from Pyrophyllite Mineral Clay. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03272-5

Keywords

Navigation