Skip to main content
Log in

Optimising sodium silica gel for Ferroin immobilization

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The addition of compounds like enzymes or catalysts in silica gel matrix expand its applications as sensor material, controlled drug-delivery and photo-active material, as well as it allows the study of pattern generation in oscillating chemical reactions in dependence on spatial catalyst structures. Creating catalyst structures requires at the moment photolithography or emulsions. A simpler way of creating spatial catalyst structures in silica gels is spotting the catalyst onto the gel matrix. The result of this procedure mainly depends on the ability of the gel to absorb the catalyst and immobilise it in the desired structure in aqueous solutions. We investigate if the addition of polymers into the silica gel can enhance the immobilization of Ferroin, which is an indicator for redox potentials and a standard catalyst for the Belousov–Zhabotinsky reaction. Polyethylenglycol (PEG), poly-styrene sodium sulfate and poly-styrenesulfate-co-maleic acid sodium salt (PSS-co-PM) were tested. By optical measurements the immobilization was analyzed and scanning electron microscopy, energy dispersive X-ray spectroscopy and nuclear magnetic resonance measurements were applied for microstructure and chemical element analysis. We found that PEG and PSS-co-PM enhance the stability of Ferroin spots in silica gels. Thereby, PEG changes the silica gel microstructure without being incorporated into the solid gel, whereas PSS-co-PM is incorporated into the silica gel and (chemically) interacts with Ferroin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Woignier, J. Primera, M. Lamy, C. Fehr, E. Anglaret, R. Sempere, J. Phalippou, J. Non-Cryst. Solids 350, 299 (2004)

    Article  CAS  Google Scholar 

  2. H.Y. Jung, R.K. Gupta, D.W. Seo, Y.H. Kim, C.M. Whang, Bull. Korean Chem. Soc. 23(6), 884 (2002)

    Article  CAS  Google Scholar 

  3. Q. Guo, T. Wang, J. Mater. Sci. 48(10), 3716 (2013)

    Article  CAS  Google Scholar 

  4. S. Grandi, A. Magistris, P. Mustarelli, E. Quartarone, C. Tomasi, L. Meda, J. Non-Cryst. Solids 352(3), 273 (2006)

    Article  CAS  Google Scholar 

  5. J. Livage, T. Coradin, C. Roux, J. Phys. Condens. Matter 13, R673 (2001)

    Article  CAS  Google Scholar 

  6. H. Podbielska, A. Ulatowska-Jarza, Bull. Pol. Acad. Sci. Chem. 53(3), 261 (2005)

    CAS  Google Scholar 

  7. M. Pagliaro, Silica-Based Materials for Advanced Chemical Applications, 1st edn. (Royal Society of Chemistry, London, 2009)

    Google Scholar 

  8. M. Power, B. Hosticka, E. Black, C. Daitch, P. Norris, J. Non-Cryst. Solids 285(1–3), 303 (2001)

    Article  CAS  Google Scholar 

  9. J.F.T. Conroy, M.E. Power, J. Martin, B. Earp, B. Hosticka, C.E. Daitch, P.M. Norris, J. Sol-Gel Sci. Technol. 18, 269 (2000)

    Article  CAS  Google Scholar 

  10. H. Boettcher, P. Slowik, W. Süss, J. Sol-Gel Sci. Technol. 13, 277 (1998)

    Article  Google Scholar 

  11. A.S. Mikhailov, K. Showalter, Phys. Rep. 425(2–3), 79 (2006)

    Article  CAS  Google Scholar 

  12. V.K. Vanag, I.R. Epstein, Chaos 18(2), 026107 (2008)

    Article  Google Scholar 

  13. J. Bolyo, T. Mair, G. Kuncova, M.J.B. Hauser, Biophys. Chem. 151(1), 54 (2010)

    Article  Google Scholar 

  14. R. Aliev, K. Agladze, Phys. D 50(1), 65 (1991)

    Article  CAS  Google Scholar 

  15. B. Neumann, Z. Nagy-Ungvarai, S.C. Müller, Chem. Phys. Lett. 211(1), 36 (1993)

    Article  CAS  Google Scholar 

  16. T. Yamaguchi, S.C. Müller, Phys. D 49, 40 (1991)

    Article  CAS  Google Scholar 

  17. J. Schlesner, V.S. Zykov, H. Brandtstädter, I. Gerdes, H. Engel, New J. Phys. 10(1), 015003 (2008)

    Article  Google Scholar 

  18. K. Suzuki, T. Yoshinobu, H. Iwasaki, J. Phys. Chem. A 104(21), 5154 (2000)

    Article  CAS  Google Scholar 

  19. A.C. Pierre, A. Rigacci, Aerogels Handbook (Springer, New York, 2011)

    Google Scholar 

  20. Y.Q. Song, J. Magn. Reson. 229, 12 (2013)

    Article  CAS  Google Scholar 

  21. R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry, 1st edn. (Springer, Berlin, 1997)

    Book  Google Scholar 

  22. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29(8), 688 (1958)

    Article  CAS  Google Scholar 

  23. F.D. Orazio, S. Bhattacharja, W.P. Halperin, Phys. Rev. 42(16), 9810 (1990)

    Article  Google Scholar 

  24. L. Latour, P. Mitra, R. Kleinberg, C. Sotak, J. Magn. Reson. Ser. A 101(3), 342 (1993)

    Article  CAS  Google Scholar 

  25. R.L. Kleinberg, W.E. Kenyon, P.P. Mitra, J. Magn. Reson. Ser. A 108(2), 206 (1994)

    Article  CAS  Google Scholar 

  26. P.P. Mitra, P.N. Sen, Phys. Rev. B 45(1), 143 (1992)

    Article  CAS  Google Scholar 

  27. A. Watson, C. Chang, Prog. Nucl. Magn. Reson. Spectrosc. 31(4), 343 (1997)

    Article  CAS  Google Scholar 

  28. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, revised edn. (Oxford University Press, New York, 1991)

    Google Scholar 

  29. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19(6), 2446 (1979)

    Article  Google Scholar 

  30. Z.R. Hinedi, A.C. Chang, M.A. Anderson, D.B. Borchardt, Water Resour. Res. 33(12), 2697 (1997)

    Article  CAS  Google Scholar 

  31. T.R. Bryar, C.J. Daughney, R.J. Knight, J. Magn. Reson. 142, 74 (2000)

    Article  CAS  Google Scholar 

  32. E. Grunewald, R. Knight, Geophysics 74(6), E215 (2009)

    Article  Google Scholar 

  33. T.S. Lee, I.M. Kolthoff, D.L. Leussing, J. Am. Chem. Soc. 70, 2348 (1948)

    Article  CAS  Google Scholar 

  34. D.T. Newcombe, T.J. Cardwell, R.W. Cattrall, S.D. Kolev, Anal. Chim. Acta 395, 27 (1999)

    Article  CAS  Google Scholar 

  35. D.W. Magerum, J. Am. Chem. Soc. 79, 2728 (1957)

    Article  Google Scholar 

  36. P. Agren, J. Counter, P. Laggner, J. Non-Cryst. Solids 261(1–3), 195 (2000)

    Article  CAS  Google Scholar 

  37. J. Martin, B. Hosticka, C. Lattimer, P. Norris, J. Non-Cryst. Solids 285(1–3), 222 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. L. thanks the Carl-Zeiss-Stiftung for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Köhler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenk, C., Mattea, C., Stapf, S. et al. Optimising sodium silica gel for Ferroin immobilization. J Porous Mater 24, 923–932 (2017). https://doi.org/10.1007/s10934-016-0331-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0331-8

Keywords

Navigation