Skip to main content
Log in

Studies on functionalized mesoporous materials: part 2. Characterization of sulphonated inorganic–organic composite materials based on mesoporous MCM-41

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The sulphonation of organic–inorganic composite materials was performed both by the sulphuric and chlorosulphonic acids. Applying IR spectroscopy, low temperature nitrogen adsorption/desorption (isotherms BET), thermogravimetric measurements and technique of competitive adsorption of toluene and water it was shown that the degree of residual organic modifier grafting, hydrophobicity, surface and volume properties (pore size distribution, pore volume) strongly depends on the nature, amount of sulphonation agent. Strong acidic media could results in partial destruction of organic modifier layer of composite material. Treatment of silylized materials in 20-fold excess of sulfuric acid results in formation of hydrophilic phase. The competitive adsorption of toluene and water data demonstrates the increase in quantity of the adsorbed water from 30 mg/g for MCM-41 to 110–280 mg/g for sulphonated materials. This results in reduction of the Hydrophobicity Index from 5.00 for MCM-41 to 0.3–0.9 for mesoporous material sulphonated by sulfuric and chlorosulphonic acids, respectively. Mild conditions of sulphonation in trichloromethane or acetic anhydride at temperature 275 K increase the hydrophilicity of composites and results in significant increasing of the surface area and pore volume in comparison with the material silylated by chlorodimethylphenylsilane. The TG/DTA data demonstrates high hydrophilicity of sulphonated mesoporous composites based on MCM-41 and high affinity to water molecules with 50–58 % weight loss at 25–100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.F. Selemenev, G.Y. Oros, O.I. Stukalov, M.P. Tsurupa, V.A. Davankov, Patent of Russian Federation No. 93032352/13(031326) 21.06.1993

  2. V.A. Chirkin, S.I. Karpov, V.F. Selemenev, N.A. Belanova, Zavod. Lab. 79, 23 (2013)

    CAS  Google Scholar 

  3. N.A. Udalova, S.I. Karpov, V.F. Selemenev, I.A. Sharmar, Russ. J. Phys. Chem. A 83(6), 1006 (2009)

    Article  CAS  Google Scholar 

  4. F. Helfferich, J. Chem. Educ. 40(4), 231 (1963)

    Google Scholar 

  5. O.B. Rudakov, Solution as a Means of Process Control in Liquid Chromatography (Voronezh State University Press, Voronezh, 2003), p. 302

    Google Scholar 

  6. M. Marhol, Ion Exchangers in Analytical Chemistry. Properties and Application (Mir, Moscow, 1982), p. 248

  7. H. Xiao, N. Cezar, J. Colloid Interface Sci. 267, 343 (2003)

    Article  CAS  Google Scholar 

  8. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn 63, 988 (1990)

    Article  CAS  Google Scholar 

  9. S. Inagaki, Y. Fukushima, K. Kuroda, J. Chem. Soc., Chem. Commun. 8, 680 (1993)

    Article  Google Scholar 

  10. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  11. M. Alvaro, A. Corma, D. Das, V. Fornés, H. García, Chem. Commun. 8, 956 (2004)

    Article  Google Scholar 

  12. J. Yang, Q. Yang, G. Wang, Z. Feng, J. Liu, J. Mol. Catal. A. 256, 122 (2006)

    Article  CAS  Google Scholar 

  13. I. Díaz, C. Márquez-Alvarez, F. Mohino, J. Perez-Pariente, E. Sastre, J. Catal. 193, 283 (2000)

    Article  Google Scholar 

  14. D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Chem. Mater. 12, 2448 (2000)

    Article  CAS  Google Scholar 

  15. J.A. Melero, G.D. Stucky, R. van Griekena, G. Morales, J. Mater. Chem. 12, 1664 (2002)

    Article  CAS  Google Scholar 

  16. D. Das, J.F. Lee, S. Cheng, Chem. Commun. 21, 2178 (2001)

    Article  Google Scholar 

  17. X. Yuan, H.I. Lee, J.W. Kim, J.E. Yie, J.M. Kim, Chem. Lett. 32, 650 (2003)

    Article  CAS  Google Scholar 

  18. E.V. Borodina, S.I. Karpov, V.F. Selemenev, F. Roessner, Nanotechnol. Russ. 5(11), 808 (2010)

    Article  Google Scholar 

  19. E.P. Barrett, L.G. Joyner, P.P.J. Halenda, J. Am. Chem. Soc. 73, 373 (1951)

    Article  CAS  Google Scholar 

  20. R. Glaeser, R. Roesky, T. Boger, G. Eigenberger, S. Ernst, J. Weitkamp, Stud. Surf. Sci. Catal. 105, 695 (1997)

    Article  Google Scholar 

  21. J. Weitkamp, S. Ernst, E. Roland, G.F. Thiele, Stud. Surf. Sci. Catal. 105, 763 (1997)

    Article  Google Scholar 

  22. S.I. Karpov, F. Roessner, V.F. Selemenev, M.V. Matveeva, Russ. J. Phys. Chem. A 84(1), 58 (2010)

    Article  CAS  Google Scholar 

  23. S. Brunauer, P. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  24. M. Thommes, R. Koehn, M. Froeba, J. Phys. Chem. 104, 7932 (2000)

    Article  CAS  Google Scholar 

  25. M. Thommes, R. Koehn, M. Froeba, Stud. Surf. Sci. Catal. 142, 1695 (2002)

    Article  Google Scholar 

  26. R.J. Cremlyn, Chlorosulphonic acid: a versatile reagent (University of Hertfordshire, Royal Society of Chemistry, Cambridge, 2002), p. 308

    Google Scholar 

  27. J.P. Bassin, R.J. Cremlyn, F.J. Swinbourne, Phosphorous Sulfur Silicon 56, 245 (1991)

    Article  CAS  Google Scholar 

  28. E.E. Gilbert, Sulphonation and Related Reactions (Wiley, New York, 1965), p. 529

    Google Scholar 

  29. M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie (Thieme, Stuttgart, 2002), p. 42

    Google Scholar 

  30. K. Kiss-Eröss, in Comprehensive Analytical Chemistry: Analytical Infrared Spectroscopy, ed. by G. Svehla. (Elsevier Scientific Publishing Company, Amsterdam, 1976), p. 396

  31. L. G. Wade. Organic Chemistry (Pearson Education, Upper Saddle River, 2006), p. 1024

  32. X.S. Zhao, G.Q. Lu, A.K. Whittaker, G.J. Millar, H.Y. Zhu, J. Phys. Chem. B 101, 6525 (1997)

    Article  CAS  Google Scholar 

  33. S.I. Karpov, F. Roessner, V.F. Selemenev, J. Porous Mater. 21(4), 449 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the German Academic Exchange Service (DAAD) and Russian Ministry of Education and Science in the frame of program “Mikhail Lomonosov”. The authors are grateful to M. Wickleder and M. Ahlers (Institute of Chemistry, Carl von Ossietzky University, Germany) for TGA/DTA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Karpov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, S.I., Roessner, F. & Selemenev, V.F. Studies on functionalized mesoporous materials: part 2. Characterization of sulphonated inorganic–organic composite materials based on mesoporous MCM-41. J Porous Mater 23, 497–505 (2016). https://doi.org/10.1007/s10934-015-0103-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0103-x

Keywords

Navigation