Skip to main content
Log in

Porous silicon surface stability: a comparative study of thermal oxidation techniques

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this report, a systematic study is carried out to check the superiority of the oxidation techniques employed for improving the surface stability of Porous Silicon (PS). PS samples were oxidized in three different atmospheres viz. ambient air, oxygen gas and the mixture of oxygen and nitrogen gas. Among them, samples oxidized under O2 atmosphere proves to be the best yielding excellent stable surface and no degradation observed even after one year. The qualitative analysis of the surface morphology, surface bond termination, and degradation, if any, of the oxidized PS samples were done by scanning electron microscope, micro-Raman, Photoluminescence and Fourier Transform Infrared spectroscopy. Electrical capacitive technique is used to check the ageing effect of the sensor device made from thermally oxidized PS. Ethanol vapor sensing was periodically made in the range of 25–100 ppm for one year, and any noticeable degradation is not observed in its sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  CAS  Google Scholar 

  2. O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)

    Article  CAS  Google Scholar 

  3. K. Kordas, S. Beke, A.E. Pap, A. Uusimaki, and S. Leppavuori, Optical properties of porous silicon. Part II: fabrication and investigation of multilayer structures. Opt. Mater. (Amsterdam, Neth.) 25, 257–260 (2004)

    Google Scholar 

  4. G. Lammel, S. Schweizer, P. Renaud, Microspectrometer based on a tunable optical filter of porous silicon. Sens. Actuators, A 92, 52–57 (2001)

    Article  CAS  Google Scholar 

  5. T. Holec, T. Chvojka, I. Jelínek, J. Jindrich, I. Nemec, I. Pelant, J. Valenta, J. Dian, Determination of sensoric parameters of porous silicon in sensing of organic vapors. Mater. Sci. Eng., C 19, 251–254 (2002)

    Article  Google Scholar 

  6. A. Foucaran, F. Pascal-Dellamnoy, A. Giani, A. Sackda, P. Combette, A. Boyer, Porous silicon layers used for gas sensor applications. Thin Solid Films 297, 317–320 (1997)

    Article  CAS  Google Scholar 

  7. S. Zairi, C. Martelet, N. Jaffrezic-Renault, R. M’Gaieth, H. Maaref, R. Lamartine, Porous silicon a transducer material for a high-sensitive (bio)chemical sensor: effect of a porosity, pores morphologies and a large surface area on a sensitivity. Thin Solid Films 383, 325–327 (2001)

    Article  CAS  Google Scholar 

  8. H. Luth, M. Thust, A. Steffen, P. Kordos, M.J. Schoning, Biochemical sensors with structured and porous silicon capacitors. Mater. Sci. Eng., B 104, 69–70 (2000)

    Google Scholar 

  9. T.M. Benson, H.F. Arrand, P. Sewell, D. Niemeyer, A. Loni, R.J. Bozeat, M. Kruger, R. Arens-Fischer, M. Thonissen, H. Luth, Progress towards achieving integrated circuit functionality using porous silicon optoelectronic components. Mater. Sci. Eng., B 69–70, 92–99 (1999)

    Google Scholar 

  10. R.J. Martin-Palma, J.M. Martinez-Duart, L. Li, R.A. Levy, Electrical behavior of double-sided metal/porous silicon structures for optoelectronic devices. Mater. Sci. Eng., C 19, 359–362 (2002)

    Article  Google Scholar 

  11. K.D. Hirschman, L. Tsybeskov, S.P. Duttagupta, P.M. Fauchet, Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996)

    Article  CAS  Google Scholar 

  12. Saakshi Dhanekar, S.S. Islam, T. Islam, Harsh, Highly sensitive porous silicon sensor: detection of organic vapours using photoluminescence quenching technique. Int. J Smart Sens. Intell. Syst. 3, 1–13 (2010)

  13. M. Bjorkqvist, J. Salonen, E. Laine, L. Niinistö, Comparison of stabilizing treatments on porous silicon for sensor applications. Phys. Stat. Sol. (a) 197, 374–377 (2003)

    Article  Google Scholar 

  14. D.B. Mawhinney, J.A. Glass Jr, J.T. Yates Jr, FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101, 1202–1206 (1997)

    Article  CAS  Google Scholar 

  15. J. Salonen, M. Bjorkqvist, E. Laine, L. Niinisto, Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl. Surf. Sci. 225, 389–394 (2004)

    Article  CAS  Google Scholar 

  16. S.T. Lakshmikumar, P.K. Singh, Stabilization of porous silicon surface by low temperature photo assisted reaction with acetylene. Current Appl. Phys. 3, 185–189 (2003)

    Article  Google Scholar 

  17. R. Boukherroub, D.D.M. Wayner, G.I. Sproule, D.J. Lockwood, L.T. Canham, Stability enhancement of partially-oxidized porous silicon nanostructures modified with ethyl undecylenate. Nano Lett. 1, 713–717 (2001)

    Article  CAS  Google Scholar 

  18. A. Nakajima, T. Itakura, S. Watanabe, N. Nakayama, Photoluminescence of porous Si, oxidized then deoxidized chemically. Appl. Phys. Lett. 61, 46–48 (1992)

    Article  CAS  Google Scholar 

  19. J.C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, Mechanisms of visible-light emission from electro-oxidized porous silicon. Phys. Rev. B 45, 14171–14176 (1992)

    Google Scholar 

  20. V. PetrovaKoch, T. Muschik, A. Kux, B.K. Meyer, F. Koch, Rapid thermal oxidized porous Si-The superior photoluminescent Si. Appl. Phys. Lett. 61, 943–945 (1992)

    Article  CAS  Google Scholar 

  21. H. Saha, Porous silicon sensors- elusive and erudite. Int. J. Smart Sens. Intel. Syst. 1, 34–56 (2008)

    Google Scholar 

  22. J.M. Buriak, M.J. Allen, Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J. Am. Chem. Soc. 120, 1339–1340 (1998)

    Article  CAS  Google Scholar 

  23. A.E. Pap, K. Kordas, G. Toth, J. Levoska, A. Uusimaki, J. Vahakangas, S. Leppavuori, Thermal oxidation of porous silicon: study on structure. Appl. Phys. Lett. 86, 041501 (2005)

    Article  Google Scholar 

  24. Saakshi Dhanekar, S.S. Islam and Harsh, Photo-induced electrochemical anodization of p-type silicon: achievement and demonstration of long term surface stability. Nanotechnology 23, 235501, (8 pp) (2012)

  25. P. Gupta, A.C. Dillon, A.S. Bracker, S.M. George, FTIR studies of H20 and D2O decomposition on porous silicon. Surf. Sci. 245, 360–372 (1991)

    Article  CAS  Google Scholar 

  26. Z.H. Xiong, L.S. Liao, S. Yuan, Z.R. Yang, X.M. Ding, X.Y. Hou, Effects of O, H and N passivation on photoluminescence from porous silicon. Thin Solid Films 388, 271–276 (2001)

    Article  CAS  Google Scholar 

  27. M.A. Vasquez-A., G.A. Guila Rodrıguez, G. Garcıa-Salgado, G. Romero-Paredes, and R. Pena-Sierra, FTIR and photoluminescence studies of porous silicon layers oxidized in controlled water vapor conditions. Revista Mexicana De Fisica 53, 431–435 (2007)

  28. A. Bragaru, M. Simion, M. Miu, T. Ignat, I. Kleps, V. Schiopu, A. Avram and F.C.R. Aciunoiu, Study of the nanostructurated silicon chemical functionalization. Romanian J. Inf. Sci. Technol. 11, 397–407 (2008)

    Google Scholar 

  29. J. Salonen, V.-P. Lehto, E. Laine, The room temperature oxidation of porous silicon. Appl. Surf. Sci. 120, 191–198 (1997)

    Article  CAS  Google Scholar 

  30. W.J. Salcedo, F.J. Ramirez Fernandez and E. Galeazzo, Structural characterization of photoluminescent porous silicon with FTIR spectroscopy. Brazilian J. Phys. 27, 158–161 (1997)

    Google Scholar 

  31. M.A. Hory, R. Hkrino, M. Ligeon, F. Muller, F. Gaspard, I. Mihalcescu, J.C. Vial, Fourier transform IR monitoring of porous silicon passivation during post-treatments such as anodic oxidation and contact with organic solvents. Thin Solid Films 255, 200–203 (1995)

    Article  CAS  Google Scholar 

  32. Nanotechnology Enanbled Sensor by Kourosh Kalantar-zadeh & Benjamin Fry, Springer, ISBN 978-0-387-32473-9

  33. Y. Kanemitsu, Photoluminescence spectrum and dynamics in oxidized silicon nanocrystals: a nanoscopic disorder system. Phys. Rev. B 53, 13515–13520 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by Department of Science and Technology, Govt. of India, through its Grant No. SR/S2/CMP-0053/2009 to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, G., Mishra, P., Joshi, B. et al. Porous silicon surface stability: a comparative study of thermal oxidation techniques. J Porous Mater 21, 23–29 (2014). https://doi.org/10.1007/s10934-013-9742-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9742-y

Keywords

Navigation