Skip to main content

Advertisement

Log in

Preparation and characterization of low-pressure nanofiltration membranes and the application in the separation process of dye molecules

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Low-pressure nanofiltratioin (NF) membranes were prepared with hydroxyl groups ended hyperbranched polyester (HPE) using polysulfone (PSf) ultrafiltration membrane as the porous support. The prepared membranes are characterized using Fourier transforms infrared spectrometry, scanning electro microscopy, atom force microscopy, X-ray photoelectron spectroscopy and water contact angle. The results indicated that the crosslinked HPE formed a uniform, ultra-thin and active layer on PSf support. Water permeability and salt rejection of the membranes were measured at the trans-membrane pressures as low as 0.3 MPa. NF membranes exhibited high enhancement in water permeability while maintaining high rejection of salts. The rejections of the nanofiltration membrane to Rhodamine B and Xylenol orange were 100 and 98.4%, respectively. The study indicated that these NF membranes could be applied to separate small organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Favre-Réguillon, G. Lebuzit, D. Murat, J. Foos, C. Mansour, M. Draye, Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res. 42, 1160–1166 (2008)

    Article  Google Scholar 

  2. C. Zwiener, Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal. Bioanal. Chem. 387, 1159–1162 (2007)

    Article  CAS  Google Scholar 

  3. C. Bellona, J.E. Drewes, P. Cu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res. 38, 2795–2809 (2004)

    Article  CAS  Google Scholar 

  4. K. Kimura, G. Amy, J.E. Drewes, T. Kim, Y. Watanabe, Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 227, 113–121 (2003)

    Article  CAS  Google Scholar 

  5. C. Causserand, P. Aimar, J.P. Cravedi, E. Singlande, Dichloroaniline retention by nanofiltration membranes. Water Res. 39, 1594–1600 (2005)

    Article  CAS  Google Scholar 

  6. Y. Zhang, C. Causserand, P. Aimar, J.P. Cravedi, Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res. 40, 3793–3799 (2006)

    Article  CAS  Google Scholar 

  7. Y. Kiso, Y. Nishimura, T. Kitao, K. Nishimura, Rejection properties of non-phenylic pesticides with nanofiltration membranes. J. Membr. Sci. 171, 229–237 (2000)

    Article  CAS  Google Scholar 

  8. L.D. Nghiem, J. McCutcheon, A.I. Schäfer, M. Elimelech, The role of endocrine disrupters in water recycling: risk or mania? Water Sci. Technol. 50(2), 215–220 (2004)

    CAS  Google Scholar 

  9. B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, Influence of molecular size, polarity, charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 156, 29–41 (1999)

    Article  Google Scholar 

  10. J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601–3610 (2008)

    Article  Google Scholar 

  11. E. Wittmann, P. Cote, C. Medici, J. Leech, A.G. Turneer, Treatment of a hard borehole water containing low levels of pesticides by nanofiltration. Desalination 119(1–3), 347–352 (1998)

    Article  CAS  Google Scholar 

  12. A.I. Schäfer, A.G. Fane, T.D. Waite, Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. Water Res. 35, 1509–1517 (2001)

    Article  Google Scholar 

  13. B. Van der Bruggen, K. Everaert, D. Wilms, C. Vandecasteele, Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. J. Membr. Sci. 193(2), 239–248 (2001)

    Article  Google Scholar 

  14. Y. Kiso, T. Kon, T. Kital, K. Nishimura, Rejection properties of alkyl phthalates with nanofiltration membranes. J. Membr. Sci. 182, 205–214 (2001)

    Article  CAS  Google Scholar 

  15. Y. Zhou, S.C. Yu, M.H. Liu, C.J. Cao, Preparation and characterization of polyamide-urethane thin-film composite membranes. Desalination 180(1–3), 189–196 (2005)

    Article  CAS  Google Scholar 

  16. J. Ji, M. Mehta, Mathematical model for the formation of film composite hollow fiber, tubular membranes by interfacial polymerization. J. Membr. Sci. 192(1–2), 41–54 (2001)

    Article  CAS  Google Scholar 

  17. J. Ji, J.M. Dickson, R.F. Childs, B.E. Mccarry, Mathematical model for the formation of thin-film composite membranes by interfacial polymerization: porous and dense films. Macromolecules 33(2), 624–633 (2000)

    Article  CAS  Google Scholar 

  18. G.Y. Chai, W.B. Krantz, Formation, characterization of polyamide membranes via interfacial polymerization. J. Membr. Sci. 93, 175–192 (1994)

    Article  CAS  Google Scholar 

  19. J.M. Gohil, P. Ray, Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: preparation, characterization and performance evaluation. J. Colloid Interface Sci. 338(1), 121–127 (2009)

    Article  CAS  Google Scholar 

  20. X. Li, S.D. Feyter, I.F.J. Vankelecom, Poly(sulfone)/sulfonated poly(ether ketone) blend membranes: morphology study and application in the filtration of alcohol based feeds. J. Membr. Sci. 324, 67–75 (2008)

    Article  CAS  Google Scholar 

  21. T. He, M. Frank, M.H.V. Mulder, M. Wessling, Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibers with sulfonated poly(ether ketone). J. Membr. Sci. 307, 62–72 (2008)

    Article  CAS  Google Scholar 

  22. R.H. Lajimi, A.B. Abdallah, E. Ferjani, M.S. Roudesli, A. Deratani, Change of the performance properties of nanofiltration cellulose acetate membranes by surface adsorption of polyelectrolyte multilayers. Desalination 163(1–3), 193–202 (2004)

    Article  CAS  Google Scholar 

  23. D.R.J. Willem, R.C.J. Nicolaa, Z. Arie, Semipermeable composite membrane, method for the preparation of such a membrane, and its use, EP0780152 (1997)

  24. L. Li, B. Wang, H. Tan, T. Chen, J. Xu, A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane. J. Membr. Sci. 269, 84–93 (2006)

    Article  CAS  Google Scholar 

  25. Y. Lu, T. Suzuki, W. Zhang, J.S. Moore, B.J. Mariñas, Nanofiltration membranes based on rigid star amphiphiles. Chem. Mater. 19, 3194–3204 (2007)

    Article  CAS  Google Scholar 

  26. T. Suzuki, Y. Lu, W. Zhang, J.S. Moore, B.J. Mariñas, Performance characterization of nanofiltrationi membranes based on rigid star amphiphiles. Environ. Sci. Technol. 41, 6246–6252 (2007)

    Article  CAS  Google Scholar 

  27. Y.C. Chiang, Y.Z. Hsub, R.C. Ruann, C.J. Chuang, K.L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine. J. Membr. Sci. 326, 19–26 (2009)

    Article  CAS  Google Scholar 

  28. X.Z. Wei, L.P. Zhu, H.Y. Deng, Y.Y. Xu, B.K. Zhu, Z.M. Huang, New type of nanofiltration membranes based on crosslinked hyperbranched polymers. J. Membr. Sci. 323, 278–287 (2008)

    Article  CAS  Google Scholar 

  29. J.Z. Yu, Y.Y. Xu, L.P. Zhu, X.Z. Wei, B.K. Zhu, Preparation and characterization of low-pressure nanofiltration membranes based on crosslinked hyperbranched polyester. Acta. Polym. Sinica. 7, 707–711 (2009)

    Article  Google Scholar 

  30. S. Qiu, L. Wu, L. Zhang, H. Chen, C. Gao, Effect of process conditions of interfacial polymerization on performance of reverse osmosis composite membrane. J. Chem. Ind. Eng. (China) 59(8), 2027–2034 (2008)

    CAS  Google Scholar 

  31. Y. Dai, X.G. Jian, S.H. Zhang, M.D. Guiver, Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK). J. Membr. Sci. 207(2), 189–197 (2002)

    Article  CAS  Google Scholar 

  32. J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Willms, Influence of ion size and charge in nanofiltration. Sep. Purif. Technol. 14, 155–162 (1998)

    Article  CAS  Google Scholar 

  33. R.J. Petersen, Composite reverse-osmosis nanofiltration membranes. J. Membr. Sci. 83(1), 81–150 (1993)

    Article  CAS  Google Scholar 

  34. E.R. Nightingale, Phenomenological theory of ion salvation: effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959)

    Article  CAS  Google Scholar 

  35. R. Du, J. Zhao, Properties of poly(N, Ndimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane. J. Membr. Sci. 239, 183–188 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Natural Science Foundation of China (Grant No. 50903071) and Zhejiang Province Natural Science Foundation (Grant No. Y4090324) are gratefully acknowledged. The authors also greatly thank Science Foundation of Zhejiang University of technology (Grant No. 105005729).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Zhen Wei or You-Yi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, XZ., Yang, J., Xu, YY. et al. Preparation and characterization of low-pressure nanofiltration membranes and the application in the separation process of dye molecules. J Porous Mater 19, 721–731 (2012). https://doi.org/10.1007/s10934-011-9524-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9524-3

Keywords

Navigation