Skip to main content

Advertisement

Log in

Binary adsorption behaviour of methane and nitrogen gases

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Separation of methane and nitrogen gases is critical in the upgrading of LFG (Landfill gas), natural gas and coal bed gas in order to have a commercial heating value for methane. From an environmental point of view, methane capture from landfill gas is essential to prevent greenhouse gas emissions. Adsorption could be a beneficial process to capture low purity methane from a landfill site that is nearing the end of its lifecycle and produce high purity methane. In this work, Ceca 13X zeolite and Alcan Activated Alumina AA 320-AP have been studied for their potential for this separation and compared with Silicalite in literature. Pure and mixture adsorption isotherms were determined at 40 and 100 °C for these adsorbents by constant volume method and concentration pulse chromatographic technique, respectively. Mixture adsorption isotherms for the binary system of methane and nitrogen gases at 40 and 100 °C and 1 atmosphere total pressure have been determined by VV–CPM (Van der Vlist and Van der Meijden Concentration Pulse Method). The application of Extended Langmuir model for this binary system have also been discussed and compared to the experimental results. Results show that equilibrium separation factor for silicalite is larger than zeolite Ceca 13X and Alcan activated alumina AA320-AP. Both Silicalite and Ceca 13X find application in the bulk separation of methane from nitrogen when y CH4 > 0.4, especially in LFG, coal bed gas and natural gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a i :

Coefficients for Eq. 6 (mmol/g/atm)

b i :

Coefficients for Eq. 7 (mmol/g/atm)

B :

Adsorption affinity constant (/atm)

B i :

Adsorption affinity constant for component ‘i’ (/atm)

c :

Sorbate concentration in bulk phase (mol/cm3)

G i :

Coefficients for Eq. 5 (mmol/g/atm)

K :

Dimensionless Henry’s law constant (dimensionless)

K p :

Dimensional Henry’s law constant (mmole/g/atm)

L :

Length of the chromatographic column (cm)

P :

(total) Pressure (atm)

P 1 :

Partial pressure of Component 1 (atm)

P 2 :

Partial pressure of Component 2 (atm)

q 0 i :

Amount adsorbed of pure gas component ‘i’ (mmol/g)

q :

Amount adsorbed (mmol/g)

q 1 :

Amount adsorbed of Component 1 (mmol/g)

q 2 :

Amount adsorbed of Component 2 (mmol/g)

q m :

Adsorption saturation capacity or maximum amount adsorbed (mmol/g)

q m1 :

Adsorption saturation capacity or maximum amount adsorbed for component 1 (mmol/g)

R :

Gas constant (8.314 J/K/mol)

t :

Time (s)

T :

Temperature (K)

x :

Mole fraction in adsorbed phase at equilibrium (dimensionless)

x 1 :

Mole fraction of component 1 in adsorbed phase at equilibrium = q 1/(q 1 + q 2) (dimensionless)

x 2 :

Mole fraction of Component 2 in adsorbed phase at equilibrium = q 2/(q 1 + q 2) (dimensionless)

y :

Mole fraction in fluid phase at equilibrium (dimensionless)

y 1 :

Mole fraction of Component 1 in fluid phase at equilibrium (dimensionless)

y 2 :

Mole fraction of Component 2 in fluid phase at equilibrium (dimensionless)

α1/2 :

Separation factor (the ratio of Component 1 over Component 2) (dimensionless)

ε:

Porosity of the bed (dimensionless)

θ :

Fraction of monolayer coverage (dimensionless)

μ:

First moment (Average retention time) (s)

μ D :

System dead time (s)

v :

Interstitial fluid velocity (cm/s)

ρ :

Density of adsorbent (without pores) (g/cc)

CH4 :

Methane

CPM:

Concentration pulse method

GC:

Gas chromatograph

He:

Helium

HT:

Harlick-Tezel

LFG:

Landfill gas

MFC:

Mass flow controller

N2 :

Nitrogen

NI:

National instruments

PSA:

Pressure swing adsorption

TCD:

Thermal conductivity detector

TSA:

Temperature swing adsorption

VV:

Van der Vlist and Van der Meijden

References

  1. A. Regnier, Oil and energy price volatility. Energy Econ. 29(3), 405–427 (2007)

    Article  Google Scholar 

  2. A. Jayaraman, A.J. Hernandez-Maldonado, R.T. Yang, D. Chinn, C.L. Munson, D.H. Mohr, Clinoptilolites for Nitrogen/Methane separation. Chem. Eng. Sci. 59, 2407–2417 (2004)

    Article  CAS  Google Scholar 

  3. S. Cavenati, C.A. Grande, A.E. Rodrigues, Upgrade of Methane from Landfill Gas by pressure swing adsorption. Energy Fuels 19, 2545–2555 (2005)

    Article  CAS  Google Scholar 

  4. K. Knaebel, S. Reinhold, E. Herbert, Landfill gas: from rubbish to resource. Adsorption 9(1), 87–94 (2003)

    Article  CAS  Google Scholar 

  5. The Science and Environment Bulletin, (Environment Canada, 1999), http://www.ec.gc.ca/science/sandemay99/article1_e.html, Accessed 20 June 2007

  6. A. Jayaraman, R.T. Yang, D. Chinn, C.L. Munson, Tailored clinoptilolites for Nitrogen/Methane separation. Ind. Eng. Chem. Res 44(14), 5184–5192 (2005)

    Article  CAS  Google Scholar 

  7. X. Dai, X. Liu, L. Qian, Z. Yan, J. Zhang, A novel method to synthesize super-activated carbon for natural gas adsorptive storage. J. Porous. Mater. 13, 399–405 (2006)

    Article  CAS  Google Scholar 

  8. R. Kumar, M. Huggahalli, S. Deng, Trace impurity removal from air. Adsorption 9(3), 243–250 (2003)

    Article  CAS  Google Scholar 

  9. R. Kumar, S. Deng, Trace carbon monoxide and hydrogen conversion prior to cryogenic distillation of air. Adsorption 12(5), 361–373 (2006)

    Article  CAS  Google Scholar 

  10. B.G. Keefer, J.A. Sawada, E.P. Johannes, S. Roy, and M.J. Brown, Systems and processes for providing hydrogen to fuel cells. World Intellectual Property Organization 02/35632 (2002)

    Google Scholar 

  11. P. Li, F.H. Tezel, Pure and binary adsorption equilibria of Methane and Carbon dioxide on silicalite. Sep. Sci. Technol. 42, 3131–3153 (2007)

    Article  CAS  Google Scholar 

  12. D. Do, D. Duong, Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, London, UK, 1998), pp. 1–148

    Google Scholar 

  13. IPCC/TEAP, Special Report on Safeguarding the Ozone Layer and The Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons (Cambridge University Press, Cambridge, 2005), p. 488

    Google Scholar 

  14. CRC Handbook of Chemistry and Physics, 85th edn. (CRC Press, Ohio, USA 2004–2005)

  15. S. Cavenati, C.A. Grande, A.E. Rodrigues, Adsorption equilibrium of Methane, Carbon dioxide, and Nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004)

    Article  CAS  Google Scholar 

  16. C.M. Yon, J.D. Sherman, Adsorption, Kirk Othmer Encyclopaedia of Chemical Technology (John Wiley & Sons, Inc., New York, 2003)

    Google Scholar 

  17. J. De Wall, R.M. Dimeo, P.E. Sokol, Slow diffusion of molecular hydrogen in zeolite 13X. J. Low Temp. Phys. 129, 171–184 (2002)

    Article  Google Scholar 

  18. J. Karger, D.M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992)

    Google Scholar 

  19. P. Li, F.H. Tezel, Pure and binary adsorption of methane and nitrogen by silicalite. J. Chem. Eng. Data 54, 8–15 (2009)

    Article  CAS  Google Scholar 

  20. D.B. Shah, D.M. Ruthven, Measurement of zeolite diffusivities by chromatography. AIChE J. 23, 804–810 (1977)

    Article  CAS  Google Scholar 

  21. R.W. Triebe, F.H. Tezel, Adsorption of Nitrogen and Carbon monoxide on clinoptilolite: determination and prediction of pure and binary isotherms. Can. J. Chem. Eng. 73, 717–724 (1995)

    Article  CAS  Google Scholar 

  22. P. Li, F.H. Tezel, Pure and binary adsorption equilibria of CO2 and N2 on Silicalite. J. Chem. Eng. Data 53, 2479–2487 (2008)

    Article  CAS  Google Scholar 

  23. P.J.E. Harlick, F.H. Tezel, A novel solution method for interpreting binary adsorption isotherms from concentration pulse chromatography data. Adsorption 6, 293–309 (2000)

    Article  CAS  Google Scholar 

  24. P.J.E. Harlick, F.H. Tezel, CO2–N2 and CO2–CH4 binary adsorption isotherms with H-ZSM-5: the importance of experimental data regression with the concentration pulse method. Can. J. Chem. Eng. 79, 236–245 (2001)

    Article  CAS  Google Scholar 

  25. E. Van der Vlist, J. Van der Meijden, Determination of the adsorption isotherms of the components of binary gas mixtures by gas chromatography. J. Chromatogr. 79, 1–13 (1973)

    Article  CAS  Google Scholar 

  26. P.J.E. Harlick, F.H. Tezel, Use of concentration pulse chromatography for determining binary isotherms: comparison with statically determined binary isotherms. Adsorption 9, 275–286 (2003)

    Article  CAS  Google Scholar 

  27. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  28. P.J.E. Harlick, F.H. Tezel, Adsorption of Carbon Dioxide, Methane and Nitrogen: Pure and Binary Mixture Adsorption for ZSM-5 with SiO2/Al2O3 Ratio of 280. Sep. Purif. Technol. 33, 199–210 (2003)

    Article  CAS  Google Scholar 

  29. V.R. Choudhary, S. Mayadevi, Adsorption of Methane, Ethane, Ethylene, and Carbon Dioxide on Silicalite-1. Zeolites 17, 501 (1996)

    Article  CAS  Google Scholar 

  30. L.V.C. Rees, P. Bruckner, J. Hampson, Sorption of N2, CH4 and CO2 in Silicalite-1. Gas Sep. Purif. 5, 67–75 (1991)

    Article  CAS  Google Scholar 

  31. T.C. Golden, S. Sircar, Gas adsorption on silicalite. J. Colloid Interf. Sci. 162, 182–188 (1994)

    Article  CAS  Google Scholar 

  32. S. Cavenati, C.A. Grande, A.E. Rodrigues, Layered Pressure swing adsorption for methane recovery from CH4/CO2/N2 streams. Adsorption 11, 549–554 (2005)

    Article  Google Scholar 

  33. J.A. Dunne, R. Mariwala, M. Rao, S.R. Sircar, J. Gorte, A.L. Myers, Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996)

    Article  CAS  Google Scholar 

  34. R.T. Yang, Adsorbents: Fundamentals and Applications (John Wiley & Sons, Inc., Hoboken, NJ, 2003)

    Book  Google Scholar 

Download references

Acknowledgments

Financial supports received from Ontario Centres of Excellence (OCE), RioTinto Alcan and Air Products & Chemicals Inc., are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Tezel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulgundmath, V.P., Tezel, F.H., Hou, F. et al. Binary adsorption behaviour of methane and nitrogen gases. J Porous Mater 19, 455–464 (2012). https://doi.org/10.1007/s10934-011-9494-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9494-5

Keywords

Navigation