Skip to main content
Log in

Uptake of cadmium, copper, and lead by microporous synthetic Na-birnessite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Removal of cadmium, copper and lead with microporous synthetic Na-birnessite (sodium-birnessite) was investigated by carrying out batch-type sorption experiments with 2 days of equilibration at room temperature. The sorption isotherms indicated that synthetic Na-birnessite showed high affinity for all three heavy metal cations. The Na-birnessite was able to take up Cd, Cu and Pb up to approximately 140, 106 and 60%, respectively of its theoretical cation exchange capacity. The above higher uptakes of Cd and Cu than the theoretical cation exchange capacity of birnessite were probably caused by exchange of not only Cd2+ but also CdCl+ species with Na+ and by exchange of not only Cu2+ but also CuCl+ species with Na+. Some exchange of CdCl+ and CuCl+ species as well as some pH-dependent specific adsorption of the Cd and Cu cations resulted in higher than theoretical uptakes. The XRD patterns after sorption of Cd with Na-birnessite showed an increase in the d(001)-spacing from 7.144 to 7.244 Å with high Cd2+ concentration, which indicated that interlayer Na+ ions were replaced by Cd2+ ions. After the sorption reactions with high Cu concentrations, the XRD patterns showed that the main d(001)-spacing of the birnessite slightly increased from 7.144 to ~7.179 Å. In the case of Pb sorption, the d(001)-spacing slightly decreased to 7.133 Å from 7.144 Å of the as synthesized Na-birnessite. These results suggest that removal of heavy metal cations by Na-birnessite is likely due to both ion exchange and chemisorption, the latter due to surface complexation at the edges and outer planar surfaces of Na-birnessite. Based on these results, Na-birnessite is proposed as a potential candidate material to remove heavy metal cations from groundwater as well as industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.W. Bryan, W.J. Langston, Environ. Pollut. 76(2), 89 (1992)

    Article  CAS  Google Scholar 

  2. P.C. Mishra, R.K. Patel, J. Hazard. Mater. 168(1), 319 (2009)

    Article  CAS  Google Scholar 

  3. V.J. Inglezakis, H. Grigoropoulou, J. Hazard. Mater. 112(1–2), 37 (2004)

    Article  CAS  Google Scholar 

  4. H.-J. Fan, P.R. Anderson, Sep. Purif. Technol. 45, 61 (2005)

    Article  CAS  Google Scholar 

  5. Y. Miyai, K. Ooi, S. Katoh, J. Colloid Interf. Sci. 130, 535 (1989)

    Article  CAS  Google Scholar 

  6. J.B. Kim, J.B. Dixon, C.C. Chusuei, Y.J. Deng, Soil Sci. Soc. Am. J. 66, 306 (2002)

    Article  CAS  Google Scholar 

  7. A. Violante, M. Pigna, Soil Sci. Soc. Am. J. 66, 1788 (2002)

    Article  CAS  Google Scholar 

  8. D.C. Golden, J.B. Dixon, C.C. Chen, Clays Clay Miner. 34, 511 (1986)

    Article  CAS  Google Scholar 

  9. C.L. Lopano, P.J. Heaney, J.E. Post, J. Hanson, S. Komarneni, Am. Mineral. 92, 380 (2007)

    Article  CAS  Google Scholar 

  10. S.E. O’Reilly, M.F. Hochella, Geochim. Cosmochim. Acta 67(23), 4471 (2003)

    Article  Google Scholar 

  11. D.S. Yang, M.K. Wang, Clays Clay Miner. 50, 63 (2002)

    Article  CAS  Google Scholar 

  12. S. Tu, G.J. Racz, T.B. Goh, Clays Clay Miner. 42, 321 (1994)

    Article  CAS  Google Scholar 

  13. S. Ching, D.J. Petrovay, M.L. Jorgensen, S.L. Suib, Inorg. Chem. 36, 883 (1997)

    Article  CAS  Google Scholar 

  14. A. Dias, R.G. Sá, M.C. Spitale, M. Athayde, V.S.T. Ciminelli, Mater. Res. Bull. 43(6), 1528 (2008)

    Article  CAS  Google Scholar 

  15. C.L. Peacock, D.M. Sherman, Chem. Geol. 238(1–2), 94 (2007)

    Article  CAS  Google Scholar 

  16. C.J. Matocha, E.J. Elesinga, D.L. Sparks, Environ. Sci. Technol. 35, 2967 (2001)

    Article  CAS  Google Scholar 

  17. L.E. Power, Y. Arai, D.L. Sparks, Environ. Sci. Technol. 39(1), 181 (2005)

    Article  CAS  Google Scholar 

  18. D. Beak, N.T. Basta, K.G. Scheckel, S.J. Traina, Environ. Sci. Technol. 42, 779 (2008)

    Article  CAS  Google Scholar 

  19. J.E. Post, P.J. Heaney, J. Hanson, Powder Diffir. 17, 218 (2002)

    Article  CAS  Google Scholar 

  20. B.A. Manning, S.E. Fendorf, B. Bostick, D.L. Suarez, Environ. Sci. Technol. 36, 976 (2002)

    Article  CAS  Google Scholar 

  21. S.S. Tripathy, S.B. Kanungo, S.K. Mishra, J. Coll. Interface Sci. 241, 112 (2001)

    Article  CAS  Google Scholar 

  22. S.S. Tripathy, J.-L. Bersillon, K. Gopal, Desalination 194, 11 (2006)

    Article  CAS  Google Scholar 

  23. L. Al-Attar, A. Dyer, A. Paajanenb, R. Harjula, J. Mater. Chem. 13, 2969 (2003)

    Article  CAS  Google Scholar 

  24. W. Zhao, X. Feng, W. Tan, F. Liu, S. Ding, J. Environ. Sci. 21, 520 (2009)

    Article  CAS  Google Scholar 

  25. Y. Takahashi, A. Manceau, N. Geoffroy, M.A. Marcus, A. Usui, Geochim. Cosmochim. Acta 71, 984 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungpyo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y., Jang, S., Kim, Y. et al. Uptake of cadmium, copper, and lead by microporous synthetic Na-birnessite. J Porous Mater 18, 125–131 (2011). https://doi.org/10.1007/s10934-010-9430-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9430-0

Keywords

Navigation