Skip to main content
Log in

Copper(II)–Humic Acid Adsorption Process Using Microporous-Zeolite Na-X

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

There is a need to develop effective and inexpensive methods for removal of heavy metals from contaminated water in developing countries. In this study, a novel microporous, microcrystalline, zeolite-type X high silica (NaX-500) sorbent was synthesized using hydrothermal method followed by calcination at 500 °C. Its sorption capacity to remove Cu(II) was tested in reconstituted water with and without humic acid (HA). Fourier transform infrared spectroscopy, chemical elemental composition, scanning electron microscopy, N2 adsorption–desorption measurement and X-ray diffraction analyses confirmed that NaX-500 has a micro-crystalline structure with micrometer-sized pores and a specific area of about 336 m2/g. The results showed that sorption of Cu(II) below 20 mg/L was described by pseudo-first-order kinetic model and above 500 mg/L by the second order model, whereas Dubinin–Radushkevich model (for all cases R2 values > 0.810) described best the sorption of copper(II) on NaX-500. The presence of HA was found to influence the adsorption efficiency as copper formed a complex with zeolite–HA, thus improving the adsorption capacities. This study shows that, the newly developed material is rapid and effective for the removal of copper from contaminated water both at low and moderate concentrations including from water with moderate concentration of humic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.  7
Fig.  8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72, 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Chowdhury, M.A.J. Mazumder, O. Al-attas, T. Husain, Science of the total environment heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ. 569–570, 476–488 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Zhang, Y. Han, J. Yang, L. Zhu, W. Zhong, Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J. Environ. Sci. 62, 31–38 (2017)

    Article  Google Scholar 

  4. R.B. Suami et al., Concentration of heavy metals in edible fishes from Atlantic Coast of Muanda, Democratic Republic of the Congo. J. Food Compos. Anal. 73, 1–9 (2018)

    Article  CAS  Google Scholar 

  5. N.A. Fakhre, B.M. Ibrahim, The use of new chemically modified cellulose for heavy metal ion adsorption. J. Hazard. Mater. 343, 324–331 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. I.M. Kenawy, M.A.H. Hafez, M.A. Ismail, M.A. Hashem, Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int. J. Biol. Macromol. 107, 1538–1549 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. T.S. Anirudhan, P.S. Suchithra, Humic acid-immobilized polymer/bentonite composite as an adsorbent for the removal of copper(II) ions from aqueous solutions and electroplating industry wastewater. J. Ind. Eng. Chem. 16(1), 130–139 (2010)

    Article  CAS  Google Scholar 

  8. Ö Gök, A. Özcan, B. Erdem, A.S. Özcan, Prediction of the kinetics, equilibrium and thermodynamic parameters of adsorption of copper(II) ions onto 8-hydroxy quinoline immobilized bentonite. Colloids Surf. A 317(1–3), 174–185 (2008)

    Article  CAS  Google Scholar 

  9. S.S. Banerjee, D.H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147(3), 792–799 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. H. Chen, G. Dai, J. Zhao, A. Zhong, J. Wu, H. Yan, Removal of copper(II) ions by a biosorbent-Cinnamomum camphora leaves powder. J. Hazard. Mater. 177(1–3), 228–236 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. J. Hao, L. Ji, C. Li, C. Hu, K. Wu, Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. J. Taiwan Inst. Chem. Eng. 88, 137–145 (2018)

    Article  CAS  Google Scholar 

  12. V. Yogeshwaran, A. Priya, Removal of hexavalent chromium by adsorption using natural wastes-a review. Adv. Recycl. Waste Manag. 2(4), 4–6 (2017)

    Google Scholar 

  13. M.A. Renu, K. Singh, S. Upadhyaya, R.K. Dohare, Removal of heavy metals from wastewater using modified agricultural adsorbents. Mater. Today Proc. 4(9), 10534–10538, 2017

    Article  Google Scholar 

  14. Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi, A. Montiel, Heavy metal removal from aqueous solutions by activated phosphate rock. J. Hazard. Mater. 156(1–3), 412–420 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. E. Kaprara et al., Cu-Zn powders as potential Cr(VI) adsorbents for drinking water. J. Hazard. Mater. 262, 606–613 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. I. Aloma, M.A. Martin-Lara, I.L. Rodriguez, G. Blazquez, M. Calero, Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 43(2), 275–281 (2012)

    Article  CAS  Google Scholar 

  17. H. Yin, J. Zhu, In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chem. Eng. J. 285, 112–120 (2016)

    Article  CAS  Google Scholar 

  18. M. Ghasemi, H. Javadian, N. Ghasemi, S. Agarwal, V.K. Gupta, Microporous nanocrystalline NaA zeolite prepared by microwave assisted hydrothermal method and determination of kinetic, isotherm and thermodynamic parameters of the batch sorption of Ni (II). J. Mol. Liq. 215, 161–169 (2016)

    Article  CAS  Google Scholar 

  19. N. Arancibia-Miranda et al., Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 301, 371–380 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. X. Kong, Z. Han, W. Zhang, L. Song, H. Li, Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr 6þ and Cd 2þ from aqueous solution. J. Environ. Manag. 169, 84–90 (2016)

    Article  CAS  Google Scholar 

  21. O.O. Ltaief, S. Siffert, S. Fourmentin, M. Benzina, Synthesis of Faujasite type zeolite from low grade Tunisian clay for the removal of heavy metals from aqueous waste by batch process: kinetic and equilibrium study ` partir d’ une argile commune ` se d’ une ze ´ olithe de type faujasite a ´ limination. C. R. Chim. 18, 1123–1133 (2015)

    Article  CAS  Google Scholar 

  22. X. Zhang, D. Tong, J. Zhao, X. Li, Synthesis of NaX zeolite at room temperature and its characterization. Mater. Lett. 104, 80–83 (2013)

    Article  CAS  Google Scholar 

  23. R. Han et al., Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chem. Eng. J. 149, 123–131 (2009)

    Article  CAS  Google Scholar 

  24. K. Menad, A. Feddag, M. Abd, E. Hasnaoui, A. Elkader, Synthesis and modification by ion exchange of the composite core-shell. J. Sci. Innov. Res. 3(4), 419–425 (2014)

    Google Scholar 

  25. Y. Bouizi, Micro-composites formed a continuous layer of zeolite covering a core zeolite-study training process, in Thesis, pp. 6, 12, 39 (2005)

  26. M.M.J. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites (Elsevier, London, 2001), pp. 11–15

    Google Scholar 

  27. H. Tanaka, A. Fujii, Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na-A and -X zeolites by two-step process. Adv. Powder Technol. 20(5), 473–479 (2009)

    Article  CAS  Google Scholar 

  28. D. Nibou, H. Mekatel, S. Amokrane, M. Barkat, M. Trari, Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. J. Hazard. Mater. 173(1–3), 637–646 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. V. Ndira, Substances humiques du sol et du compost: analyse elementaire et groupements atomiques fictifs: vers une approche thermodynamique (2006)

  30. Y. Zhan, Z. Zhu, J. Lin, Y. Qiu, J. Zhao, Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. J. Environ. Sci. 22(9), 1327–1334 (2010)

    Article  CAS  Google Scholar 

  31. S.V. Mohan, J. Karthikeyan, Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ. Pollut. 97(1–2), 183–187 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 (2012)

    Article  CAS  Google Scholar 

  33. A. Günay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146(1–2), 362–371 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. G. Asgari, B. Roshani, G. Ghanizadeh, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone, J. Hazard. Mater. 217–218, 123–132 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. I. Kuźniarska-Biernacka, A.M. Fonseca, I.C. Neves, Manganese complexes with triazenido ligands encapsulated in NaY zeolite as heterogeneous catalysts. Inorg. Chim. Acta 394, 591–597 (2013)

    Article  CAS  Google Scholar 

  37. J. Lin, Y. Zhan, Z. Zhu, Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloids Surf. A 384, 9–16 (2011)

    Article  CAS  Google Scholar 

  38. T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem. Eng. J. 270, 393–404 (2015)

    Article  CAS  Google Scholar 

  39. C. Wang, L. Lippincott, I. Yoon, X. Meng, Modeling, rate-limiting step investigation, and enhancement of the direct bio-regeneration of perchlorate laden anion-exchange resin. Water Res. 43(1), 127–136 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. S. Wang, T. Terdkiatburana, M.O. Tadé, Single and co-adsorption of heavy metals and humic acid on fly ash. Sep. Purif. Technol. 58(3), 353–358 (2008)

    Article  CAS  Google Scholar 

  41. S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ. Chem. Eng. 2(1), 398–414 (2014)

    Article  CAS  Google Scholar 

  42. W.S.W. Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J. Environ. Manag. 91(4), 958–969 (2010)

    Article  CAS  Google Scholar 

  43. J.P. Hobson, Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure. J. Phys. Chem. 309(22), 2720–2727 (1969)

    Article  Google Scholar 

  44. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Corresponding author is thankful to Dr. A. FEDDAG, MCA, Mostaganem University and Prof. T. JUHNA, Director, Water Research laboratory, Riga Technical University for constant encouragement and providing infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Menad.

Appendix

Appendix

See Table 6.

Table 6 Summary of equations and models using in kinetics and adsorption isotherm in batch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menad, K., Feddag, A. & Juhna, T. Copper(II)–Humic Acid Adsorption Process Using Microporous-Zeolite Na-X. J Inorg Organomet Polym 29, 1–16 (2019). https://doi.org/10.1007/s10904-018-0958-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0958-9

Keywords

Navigation