Skip to main content

Advertisement

Log in

Sediment lithology and stable isotope composition of organic matter in a core from a cirque in the Krkonoše Mountains, Czech Republic

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This study presents detailed lithostratigraphy and stable carbon and nitrogen isotopic variations in a 520-cm-long sediment core from a cirque basin in the Labský důl Valley, Krkonoše Mountains, Czech Republic. Detailed study of the core reveals five major periods of sedimentation during the last 7600 years: silt and sand deposition during ~7.6–5.1 ka cal BP, Sphagnum peat accumulation during ~5.1–4.0 ka cal BP, sandy silt and sand during ~4.0–2.8 ka cal BP, raised peat bog during ~2.8–2.0 ka cal BP (Sphagnum peat), and sedimentation of sandy silt since ~2.0 ka cal BP. The δ13C values of the organic matter in the core vary in the range typical for C3 plants, from −24.35 to −27.68‰, whereas the δ15N values vary from −2.65 to +4.35‰. Core sections having ash contents ≥70% have δ15N > 1‰ and δ13C < −26‰, whereas those having ≤70% ash content have δ15N < 1‰ and δ13C > −26‰. Strong linear correlations are observed between δ13C and δ15N values as well as between C:N ratios and δ15N values in the horizons with ash content >10%, primarily for sand and silt horizons. On the other hand, poor correlations between δ13C and C:N ratio, as well as δ15N and C:N ratio, were observed in Sphagnum peat layers (45–125 and 185–265 cm). We conclude that the primary stable isotope variations are not preserved in the layers where significant correlation between δ15N and C:N ratio is observed. The relatively small δ13C variation in the uppermost Sphagnum peat layer suggests stable temperature during ~2.8–2.0 ka cal BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akagi T, Minomo K, Kasuya N, Nakamura T (2004) Variation in carbon isotopes of bog peat in the Ozegahara peatland, Japan. Geochem J 38:299–306

    Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1–10

    Article  Google Scholar 

  • Asada T, Warner BG, Aravena R (2005) Nitrogen isotope signature variability in plant species from open peatland. Aquat Bot 82:297–307

    Article  Google Scholar 

  • Aucour AM, Hillaire-Marcel C, Bonnefille R (1996) Oxygen isotopes in cellulose from modern and quaternary intertropical peatbogs: implications for palaeohydrology. Chem Geol 129:341–359

    Article  Google Scholar 

  • Belova SE, Pankratov TA, Dedysh SN (2006) Bacteria of the genus Burkholderia as a typical component of the microbial community of Sphagnum peat bogs. Microbiology 75:90–96

    Article  Google Scholar 

  • Bieroński J, Chmal H, Czerwiński J, Klementowski J, Traczyk A (1992) Współczesna denudacja w górskich zlewniach Karkonoszy. Pr Geogr 155:151–169

    Google Scholar 

  • Birks HJB, Birks HH (1980) Quaternary palaeoecology. Edward Arnold, London

    Google Scholar 

  • Blackford JJ, Chambers FM (1993) Determining the degree of peat decomposition for peat-based palaeoclimatic studies. Int Peat J 5:7–24

    Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L et al (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen depositions in Europe. New Phytol 163:609–616

    Article  Google Scholar 

  • Bragazza L, Rydin H, Gerdol R (2005a) Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog. Plant Ecol 177:223–236

    Article  Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T, Hájková P, Hansen I, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005b) Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Change Biol 11:106–114

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 51(103):19386–19389

    Article  Google Scholar 

  • Braucher R, Kalvoda J, Bourlès D, Brown E, Engel Z, Mercier JL (2006) Late Pleistocene deglaciation in the Vosges and the Krkonoše mountains: correlation of cosmogenic 10Be exposure ages. Geografický časopis 58:3–14

    Google Scholar 

  • Breeuwer A, Heijmans M, Robroek BJM, Limpens J, Berendse F (2008) The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos 117:1258–1268

    Article  Google Scholar 

  • Breeuwer A, Heijmans MMPD, Gleichman M, Robroek BJM, Berendse F (2009) Response of Sphagnum species mixtures to increased temperature and nitrogen availability. Plant Ecol. doi 10.1007/s11258-009-9571-x

  • Brenninkmeijer CAM, van Geel B, Mook WG (1982) Variations in the D/H and 18O/16O ratios in cellulose extracted from a peat bog core. Earth Planet Sci Lett 61:283–290

    Article  Google Scholar 

  • Caseldine CJ, Baker A, Charman JJ, Hendon D (2000) A comparative study of optical properties of NaOH peat extracts: implications for humification studies. Holocene 10:649–658

    Article  Google Scholar 

  • Chmal H, Traczyk A (1998) Postglacjalny rozwój rzeźby Karkonoszy i Gór Izerskich w świtle analizy osadów rzecznych, jeziornych i stokowych. In: Sarosiek J, Štursa J (eds) Geoekologiczne problemy Karkonoszy. Acarus, Poznań, pp 81–87

    Google Scholar 

  • Coulson PJ, Bottrell HS, Lee AJ (2005) Recreating atmospheric sulfur deposition histories from peat stratigraphy: diagenetic conditions required for signal preservation and reconstruction of past sulfur deposition in the Derbyshire Peak District UK. Chem Geol 218:223–248

    Article  Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716

    Article  Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • Diefendorf AF, Patterson WP, Holmden C, Mullins TH (2008) Carbon isotopes of marl and lake sediment organic matter reflect terrestrial landscape change during the late Glacial and early Holocene (16, 800 to 5, 540 cal yr BP.): a multiproxy study of lacustrine sediments at Lough Inchiquin, western Ireland. J Paleolimnol 39:101–115

    Article  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Article  Google Scholar 

  • Elliott EM, Kendall C, Wankel SD, Burns DA, Boyer EW, Harlin K, Bain DJ, Butler TJ (2007) Nitrogen isotopes as indicators of NO x source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States. Environ Sci Technol 41:7661–7667

    Article  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubic KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  • Gale SJ, Hoare PG (1991) Quaternary sediments: petrographic methods for the study of unlithified rocks. Belhaven Press, London

    Google Scholar 

  • Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Glob Change Biol 13:1810–1821

    Article  Google Scholar 

  • Jankovská V (2004) Krkonoše v době poledové: vegetace a krajina. Opera Corcontica 41:111–123

    Google Scholar 

  • Jędrysek MO, Skrzypek G (2005) Hydrogen, carbon and sulphur isotope ratios in peat: the role of diagenesis and water regimes in reconstruction of past climates. Environ Chem Lett 2:179–183

    Article  Google Scholar 

  • Jędrysek MO, Skrzypek G, Wada E, Doroszko B, Kral T, Pazdur A, Vijarnsorn P, Takai Y (1995) δ13C and δ34S analysis in peat profiles and global change. Przegl Geol 43:1004–1010

    Google Scholar 

  • Jędrysek MO, Krapiec M, Skrzypek G, Kaluzny A, Halas S (2003) Air-pollution effect and paleotemperature scale versus δ 13C records in tree rings and in a peat core (Southern Poland). Water Air Soil Pollut 145(1):359–375

    Article  Google Scholar 

  • Jeník J (1961) Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: teorie anemo-orografických systémů. ČSAV, Praha

    Google Scholar 

  • Johnson LC, Damman AWH (1993) Decay and its regulation in Sphagnum peatlands. Adv Bryol 5:249–296

    Google Scholar 

  • Jonasson S, Shaver GR (1999) Within-stand nutrient cycling in Arctic and boreal wetlands. Ecology 80:2139–2150

    Article  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 375–449

    Chapter  Google Scholar 

  • Kolasinski J, Rogers K, Frouin P (2008) Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Spectrom 22:2955–2960

    Article  Google Scholar 

  • Krab EJ, Cornelissen JHC, Lang SI, van Logtestijn RSP (2008) Amino acid uptake among wide-ranging moss species may contribute to their strong position in higher-latitude ecosystems. Plant Soil 304:199–208

    Article  Google Scholar 

  • Kuhry P, Vitt DH (1996) Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77:271–275

    Article  Google Scholar 

  • Lamentowicz M, Cedro A, Gałka M, Goslar T, Miotk-Szpiganowicz G, Mitchell EDA, Pawlyta J (2008) Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate amoebae. Palaeogeogr Palaeoclimatol Palaeoecol 265:93–106

    Article  Google Scholar 

  • Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B (1991) Stable isotopes in tree ring cellulose and climate change. Tellus 43B:322–330

    Google Scholar 

  • Loader NJ, McCarroll D, van der Knaap WO, Robertson I, Gagen M (2007) Characterizing carbon isotopic variability in Sphagnum. Holocene 17:403–410

    Article  Google Scholar 

  • Ložek V (1999) Postglaciální klimatické optimum. Ochrana přírody 54:195–200

    Google Scholar 

  • Maisch M (2000) The long term signal of climate change in the Swiss Alps. Geogr Fis Dinam Quat 23:139–152

    Google Scholar 

  • Malmer N, Nihlgård B (1980) Supply and transport of mineral nutrients in a sub-arctic mire. In: Sonesson M (ed) Ecology of a sub-arctic mire. SNSRC, Stockholm, pp 63–95

    Google Scholar 

  • Marszałek H (2007) Forming of groundwater resources in the Jelenia góra basin region (in Polish). Acta Univ Wratislav No 2993, Wroclaw

    Google Scholar 

  • McNeil P, Waddington JM (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367

    Google Scholar 

  • Ménot G, Burns SJ (2001) Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland. Org Geochem 32:233–245

    Article  Google Scholar 

  • Metelka L, Mrkvica Z, Halásová O (2007) Podnebí. In: Flousek J, Hartmanová O, Štursa J, Potocki J (eds) Krkonoše. Baset, Praha, pp 147–154

    Google Scholar 

  • Moschen R, Kühl N, Rehberger I, Lücke A (2009) Stable carbon and oxygen isotopes in sub-fossil Sphagnum: assessment of their applicability for palaeoclimatology. Chem Geol 259:262–272

    Article  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 22–44

    Google Scholar 

  • Novák M, Buzek F, Adamová M (1999) Vertical trends in δ 13C, δ 15N and δ 34S ratios in bulk Sphagnum peat. Soil Biol Biochem 31:1343–1346

    Article  Google Scholar 

  • Novák M, Bottrell HS, Přechová E (2001) Sulfur isotope inventories of atmospheric deposition, spruce forest floor and living Sphagnum along a NW–SE transect across Europe. Biogeochemistry 53:23–50

    Article  Google Scholar 

  • Novák M, Zemanová L, Jačková I, Buzek F, Adamová M (2009) Isotope composition of bulk carbon in replicated Sphagnum peat cores from three Central European high-elevation wetlands. Geochem J 43:5–9

    Google Scholar 

  • Opelt K, Chobot V, Hadacek F, Schönmann S, Eberl L, Berg G (2007) Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol 9:2795–2809

    Article  Google Scholar 

  • Paul D, Skrzypek G, Forizs I (2007) Normalization of measured stable isotope composition to isotope reference scale: a review. Rapid Commun Mass Spectrom 21:3006–3014

    Article  Google Scholar 

  • Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecol 196:111–121

    Article  Google Scholar 

  • Proctor MCF (2000) Physiological ecology. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 225–247

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JWJ, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Roberts N (1998) The Holocene: an environmental history. Blackwell, Oxford

    Google Scholar 

  • Rydin H (1985) Effect of water level on desiccation of Sphagnum in relation to surrounding Sphagna. Oikos 45:374–379

    Article  Google Scholar 

  • Schipperges B, Rydin H (1998) Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytol 140:677-684

    Article  Google Scholar 

  • Skrzypek G, Jędrysek MO (2005) 13C/12C ratio in peat cores: record of past climates. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry: green chemistry and pollutants in ecosystems. Springer, Berlin, pp 65–73

    Google Scholar 

  • Skrzypek G, Kałużny A, Jędrysek MO (2007a) Carbon stable isotope analyses of mosses—comparisons of bulk organic matter and extracted nitrocellulose. J Am Soc Mass Spectrom 18:1453–1458

    Article  Google Scholar 

  • Skrzypek G, Kałużny A, Wojtuń B, Jędrysek MO (2007b) The carbon stable isotopic composition of mosses—the record of temperature variations. Org Geochem 38:1770–1781

    Article  Google Scholar 

  • Skrzypek G, Paul D, Wojtuń B (2008) Stable isotope composition of plants and peat from Arctic mire and geothermal area in Iceland. Pol Polar Res 29(4):365–376

    Google Scholar 

  • Skrzypek G, Baranowska-Kącka A, Keller-Sikora A, Jędrysek MO (2009) Analogous trends in pollen percentages and carbon stable isotope composition of Holocene peat—possible interpretation for palaeoclimate studies. Rev Palaeobot Palynol. doi 10.1016/j.revpalbo.2009.04.014

  • Smith BN, Herath HM, Chase JB (1973) Effect of growth temperature on carbon isotopic ratios in barley, pea and rape. Plant Cell Physiol 14:177–182

    Google Scholar 

  • Spusta V, Spusta V, Kociánová M (2003) Ukládání sněhu na závětrných svazích české strany Krkonoš: tundrová část. Opera Corcontica 40:87–104

    Google Scholar 

  • Staffa H, Berg G (1982) Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Can J Botany 60:1561–1568

    Google Scholar 

  • Tesař M, Šír M, Syrovátka O, Dvořák I (2000) Vodní bilance půdního profilu v pramenné oblasti Labe—Krkonoše. Opera Corcontica 37:127–142

    Google Scholar 

  • Titus JE, Wagner DJ (1984) Carbon balance for two Sphagnum mosses: water balance resolves a physiological paradox. Ecology 65:1765–1774

    Article  Google Scholar 

  • Troughton JH, Card KA (1975) Temperature effects on the carbon-isotope ratio of C3, C4 and Crasssulacean-acid-metabolism (CAM) Plants. Planta 123:185–190

    Article  Google Scholar 

  • von Post L (1946) The prospect for pollen analysis in the study of the earth’s climatic history. New Phytol 45:193–217

    Article  Google Scholar 

  • Whelan T, Sackett WM, Benedict CR (1973) Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants. Plant Physiol 51:1051–1054

    Article  Google Scholar 

  • Williams TG, Flanagan LB (1996) Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108:38–46

    Article  Google Scholar 

  • Wynn JG (2007) Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeogr Palaeoclimatol Palaeoecol 251:437–448

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by grant nos. 205/06/0587 and MSM0021620831 to Z. Engel. Thanks are due to two anonymous reviewers and M. Brenner, Editor in Chief for their insightful reviews and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Skrzypek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, Z., Skrzypek, G., Paul, D. et al. Sediment lithology and stable isotope composition of organic matter in a core from a cirque in the Krkonoše Mountains, Czech Republic. J Paleolimnol 43, 609–624 (2010). https://doi.org/10.1007/s10933-009-9356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9356-1

Keywords

Navigation