Skip to main content

Advertisement

Log in

Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The major environmental gradients underlying plant species distribution were outlined in two climatically and bio-geographically contrasting mires: a Swedish bog in the boreo-nemoral zone, and an Italian bog in the south-eastern Alps. Data on mire morphology, surface hydrology, floristic composition, peat chemistry and pore-water chemistry were collected along transects from the mire margin (i.e., the outer portion of the mire in contact with the surrounding mineral soil) towards the mire expanse (i.e., the inner portion of the mire). The delimitation and the extent of the minerotrophic mire margin were related to the steepness of the lateral mire slope which, in turns, controls the direction of surface water flow. The mineral soil water limit was mirrored in geochemical variables such as pH, alkalinity, Ca2+, Mg2+, Al3+, Mn2+, and SiO2 concentrations in pore-water, as well as Ca, Al, Fe, N and P contents in surface peat. Depending on regional requirements of plant species, different species were useful as fen limit indicators at the two sites. The main environmental factors affecting distribution of habitat types and plant species in the two mires were the acidity-alkalinity gradient, and the gradient in depth to the water table. The mire margin – mire expanse gradient corresponds to a complex gradient mainly reflected in a differentiation of vegetation structure in relation to the aeration of the peat substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aerts J.T.A. Verhoeven D.F. Whigham (1999) ArticleTitlePlant mediated controls on nutrient cycling in temperate fens and bogs Ecology 80 2170–2181

    Google Scholar 

  2. R. Alber R. Bragazza L.and Gerdol (1996) ArticleTitleEin Beitrag zur Moortypologie am südlichen Rand des Sphagnum-Moorareals in Europa Phyton (Horn, Austria) 36 107–125

    Google Scholar 

  3. S.E. Allen (1989) Chemical Analysis of Ecological Materials Blackwell Scientific Publication, OxfordUK

    Google Scholar 

  4. H. Almquist-Jacobson D.R. Foster (1995) ArticleTitleToward an integrated model for raised-bog development: theory and field evidence Ecology 76 2503–2516

    Google Scholar 

  5. M. Austin T. Smith (1989) ArticleTitleA new model for continuum concept Vegetatio 83 35–47

    Google Scholar 

  6. B.L. Bedford M.R. Walbridge A. Aldous (1999) ArticleTitlePatterns in nutrient availability and plant diversity of temperate North American wetlands Ecology 80 2151–2169

    Google Scholar 

  7. R.J. Belland D.H. Vitt (1994) ArticleTitleBryophyte vegetation patterns along the environmental gradients in continental bogs Ecoscience 2 395–407

    Google Scholar 

  8. L. Bragazza (1997) ArticleTitleSphagnum niche diversification in two oligotrophic mires in the southern Alps of Italy Bryologist 100 499–515

    Google Scholar 

  9. L. Bragazza R. Gerdol (1999) ArticleTitleEcological gradients in some Sphagnum mires in the southeaster Alps (Italy) Applied Vegetation Science 2 55–60

    Google Scholar 

  10. L. Bragazza R. Gerdol (2002) ArticleTitleDoes the gradient in nutrient availability coincide with the acidity-alkalinity gradient in Sphagnum-dominated peatlands? Journal of Vegetation Science 13 473–482

    Google Scholar 

  11. L. Bragazza R. Gerdol H. Rydin (2003) ArticleTitleEffects of mineral and nutrient input on mire bio-geochemistry in two geographical regions Journal of Ecology 9 417–426

    Google Scholar 

  12. S.D. Bridgham J. Pastor J.A. Janssens C. Chapin T.J. Malterer (1996) ArticleTitleMultiple limiting gradients in peatlands: a call for a new paradigm Wetlands 16 45–65

    Google Scholar 

  13. C. Chagué-Goff W.S. Fyfe (1996) ArticleTitleGeochemical and petrographical characteristics of a domed bog, Nova Scotia: a modern analogue for temperate coal deposits Organic Geochemistry 24 141–158

    Google Scholar 

  14. R.S. Clymo P.M. Hayward (1982) The ecology of Sphagnum. A.J.E. Smith (Eds) Bryophyte Ecology Chapman and Hall London, Great Britain 229–289

    Google Scholar 

  15. D.J. Cooper E. Andrus R. (1994) ArticleTitlePatterns of vegetation and water chemistry in peatlands of the west-central Wind River RangeWyoming, U.S.A Canadian Journal of Botany 72 1586–1597

    Google Scholar 

  16. A.W.H. Damman (1995) ArticleTitleMajor mire vegetation units in relation to the concepts of ombrotrophy and minerotrophy: a worldwide perspective Gunneria 70 23–34

    Google Scholar 

  17. G.E. Du Rietz (1949) ArticleTitleHuvudenheter och huvudgränser i svensk myrvegetation Svensk Botanisk Tidskrift 43 274–309

    Google Scholar 

  18. Du Rietz G. E. 1950. Phytogeographical excursion to the Ryggmossen mire near Uppsala. Excursion guide A II b3. July 10, 1950. Seventh International Botanical Congress, Stockholm, Sweden.

  19. E. Du Rietz G. (1954) ArticleTitleDie Mineralbodenwasserzeigergrenze als Grundlage einer natürlichen Zweigliederung der nord- und mitteleuropäischen Moore Vegetatio 5-6 571–585

    Google Scholar 

  20. F. Fliri (1975) Das klima der Alpen im raume von Tirol Universitätsverlag Wagner Innsbruck, Austria

    Google Scholar 

  21. J.P. Frahm W. Frey (1987) Moosflora Ulmer StuttgartGermany

    Google Scholar 

  22. R. Gerdol (1995) ArticleTitleCommunity and species-performance patterns along an alpine poor-rich mire gradient Journal of Vegetation Science 6 175–182

    Google Scholar 

  23. L.D. Gignac D.H. Vitt (1990) ArticleTitleHabitat limitations of Sphagnum along climatic, chemical and physical gradients Bryologist 93 7–22

    Google Scholar 

  24. P.H. Glaser J.A. Janssens D.I. Siegel (1990) ArticleTitleThe response of vegetation to chemical and hydrological gradients in the Lost River peatlandNorthern Minnesota Journal of Ecology 78 1021–1048

    Google Scholar 

  25. H. Glaser P. (1992) ArticleTitleRaised bogs in eastern North America – regional controls for species richness and floristic assemblages Journal of Ecology 80 535–554

    Google Scholar 

  26. H. Glaser P. D.I. Siegel E.A. Romanowicz Y.P. Shen (1997) ArticleTitleRegional linkages between raised bogs and climategroundwaterand landscape of north-western Minnesota Journal of Ecology 85 3–16

    Google Scholar 

  27. E. Gorham (1950) ArticleTitleVariation in some chemical conditions along the borders of a Carex lasiocarpa fen community Oikos 2 217–240

    Google Scholar 

  28. E. Gorham (1957) ArticleTitleDevelopment of peatlands Quaternary Review of Biology 32 145–166

    Google Scholar 

  29. E. Gorham S.J. Eisenreich J. Ford M.V. Santelman (1985) The chemistry of bog waters W. Stumm (Eds) Chemical Processes in Lakes Wiley New York, NY, USA

    Google Scholar 

  30. G. Gran (1952) ArticleTitleDetermination of the equivalence point in potentiometric titration Analyst 77 661–671

    Google Scholar 

  31. L. Heikurainen J. Päivänen J.and Sarasto (1964) ArticleTitleGround-water table and water content in peat soil Acta Forestalia Fennica 77 1–18

    Google Scholar 

  32. M.L. Heinselman (1970) ArticleTitleLandscape evolution, peatland types, and the environment in the Lake Agassiz Peatlands Natural AreaMinnesota Ecological Monographs 33 236–261

    Google Scholar 

  33. M.R. Hoosbeek N. van Breemen H. Vasander A. Buttler F. Berendse (2002) ArticleTitlePotassium limits potential growth of bog vegetation under elevated atmospheric CO2N deposition Global Change Biology 8 1130–138

    Google Scholar 

  34. H.A.P. Ingram (1982) ArticleTitleSize and shape in raised mire ecosystems: a geophysical model Nature 297 300–303

    Google Scholar 

  35. N. Malmer (1962) ArticleTitleStudies on mire vegetation in the Archaean area of southwestern Götaland (south Sweden) I. Vegetation and habitat conditions on the Åkhult mire. Opera Botanica 7 1–322

    Google Scholar 

  36. N. Malmer (1986) ArticleTitleVegetational gradients in relation to environmental conditions in north-western European mires Canadian Journal of Botany 64 375–383

    Google Scholar 

  37. N. Malmer D.G. Horton D.H. Vitt (1992) ArticleTitleElement concentrations in mosses and surface waters of western Canadian mires relative to precipitation chemistry and hydrology Ecography 15 114–128

    Google Scholar 

  38. W.J. Mitsch J.G. Gosselink (2000) Wetlands John Wiley New York, USA

    Google Scholar 

  39. S.F. Mullen J.A. Janssens E. Gorham (2000) ArticleTitleAcidity of and the concentrations of major and minor metals in the surface waters of bryophytes assemblages from 20 North America bogs and fens Canadian Journal of Botany 78 718–727

    Google Scholar 

  40. R.H. Økland T. Økland K. Rydgren (2001) ArticleTitleA Scandinavian perspective on ecological gradients in north-west European mires: reply to Wheeler and Proctor Journal of Ecology 89 481–486

    Google Scholar 

  41. S. Pignatti (1982) Flora d’Italia Edagricole Bologna, Italia

    Google Scholar 

  42. F. Proctor M.C. (1994) ArticleTitleSeasonal and shorter-term changes in surface-water chemistry on four English ombrogenous bogs Journal of Ecology 82 597–610

    Google Scholar 

  43. M.C.F. Proctor (1995) The ombrogenous bog environment. B. Wheeler S. Shaw R. Fojt R. Robertson (Eds) Restoration of Temperate Wetlands John Wiley ChichesterUK

    Google Scholar 

  44. A.S. Reeve D.I. Siegel P.H. Glaser (1996) ArticleTitleGeochemical controls on peatland pore-water from the Hudson Bay Lowland: a multivariate statistical approach Journal of Ecology 181 285–304

    Google Scholar 

  45. H. Rydin A.J.S. McDonald (1985) ArticleTitleTolerance of Sphagnum to water level Journal of Bryology 13 571–578

    Google Scholar 

  46. H. Rydin H. Sjörs M. Löfroth (1999) ArticleTitleMires Acta Phytogeographica Suecica 84 91–112

    Google Scholar 

  47. M.V. Santelmann (1991) ArticleTitleInfluences on the distribution of Carex exilis: an experimental approach Ecology 72 2025–2037

    Google Scholar 

  48. G.R. Shaver M. Melillo (1984) ArticleTitleNutrient budgets of marsh plants: efficiency concepts and relation to availability Ecology 65 1491–1510

    Google Scholar 

  49. W. Shotyk (1988) ArticleTitleReview of the inorganic geochemistry of peats and peatland waters Earth Science Review 25 95–176

    Google Scholar 

  50. W. Shotyk (1996) ArticleTitlePeat bog archives of atmospheric metal deposition: geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors Environmental Review 4 149–183

    Google Scholar 

  51. H. Sjörs (1948) ArticleTitleMyrvegetation i Bergslagen Acta Phytogeographica Suecica 21 1–299

    Google Scholar 

  52. H. Sjörs (1952) ArticleTitleOn the relation between vegetation and electrolytes in north Swedish mire waters Oikos 2 241–258

    Google Scholar 

  53. H. Sjörs U. Gunnarsson (2002) ArticleTitleCalcium and pH in north and central Swedish mire waters Journal of Ecology 90 650–657

    Google Scholar 

  54. InstitutionalAuthorNameSMHI (1998) Väder och vatten Nordköpping Sweden

    Google Scholar 

  55. L. Söderström L. Hedenäs (1998) ArticleTitleChecklista över Sveriges mossor Myrinia 8 58–90

    Google Scholar 

  56. InstitutionalAuthorNameStatistica (2002) StatSoft Inc Tulsa OklahomaUSA

    Google Scholar 

  57. R.J. Summerfield (1972) ArticleTitleBiological inertia: an example Journal of Ecology 60 793–798

    Google Scholar 

  58. T. Tahvanainen T. Sallantaus R. Heikkilä K. Tolonen (2002) ArticleTitleSpatial variation of mire surface water chemistry and vegetation in north-eastern Finland Annales Botanici Fennici 39 235–251

    Google Scholar 

  59. D. Tait B. Thaler (2000) ArticleTitleAtmospheric deposition and lake chemistry at a high mountain site in the eastern Alps Journal of Limnology 59 61–71

    Google Scholar 

  60. C.J.F. ter Braak P. Smilauer (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical ordination (version 4) Microcomputer Power IthacaNY, USA

    Google Scholar 

  61. Thunmark S. 1942. Uber rezente Eisenocker und ihre Mikroorganismengemeinschafte. Bullettin of the Geological Institute of Uppsala, 29.

  62. T.G. Tutin V.H. Heywood N.A. Burges D.M. Moore D.H. Valentine S.M. Walters A. Webb (1964–1980) Flora EuropaeaVoll I −V Cambridge University Press UK

    Google Scholar 

  63. N.R. Urban S.J. Eisenreich (1988) ArticleTitleNitrogen cycling in a forested Minnesota bog Canadian Journal of Botany 66 435–449

    Google Scholar 

  64. D.H. Vitt L. Chee W. (1990) ArticleTitleThe relationships of vegetation to surface water chemistry and peat chemistry in fens of AlbertaCanada Vegetatio 89 87–106

    Google Scholar 

  65. D.H. Vitt S.E. Bayley T.L. Jin (1995) ArticleTitleSeasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada Canadian Journal of Fisheries and Aquatic Science 52 587–606

    Google Scholar 

  66. G. Vivian-Smith (1997) ArticleTitleMicrotopographic heterogeneity and floristic in experimental wetland communities Journal of Ecology 85 71–82

    Google Scholar 

  67. D.J. Wagner J.E. Titus (1984) ArticleTitleComparative desiccation tolerance of two Sphagnum mosses Oecologia 62 182–187

    Google Scholar 

  68. R. Wagner (1969) ArticleTitleNeue Aspekte zur Stickstoffanalytik in der Wasserchemie Vom Wasser 36 263–318

    Google Scholar 

  69. G.J. Waughman (1980) ArticleTitleChemical aspects of the ecology of some south German peatlands Journal of Ecology 68 1025–1046

    Google Scholar 

  70. E.D. Wells (1996) ArticleTitleClassification of peatland vegetation in Atlantic Canada Journal of Vegetation Science 7 847–878

    Google Scholar 

  71. B.D. Wheeler M.C.F. Proctor (2000) ArticleTitleEcological gradients, subdivision and terminology of north-west European mires Journal of Ecology 88 187–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bragazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bragazza, L., Rydin, H. & Gerdol, R. Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog. Plant Ecol 177, 223–236 (2005). https://doi.org/10.1007/s11258-005-2182-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-005-2182-2

Keywords

Navigation