Skip to main content

Advertisement

Log in

Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera)

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination (\( r_{\text{jack}}^{2} \) = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker (\( r_{\text{jack}}^{2} \) = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bergström AK, Jansson M (2000) Bacterioplankton production in humic Lake Ostrasket in relation to input of bacterial cells and input of allochthonous organic carbon. Microb Ecol 39:101–115. doi:10.1007/s002480000007

    Article  Google Scholar 

  • Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M (2006) Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–171. doi:10.1007/s00027-006-0813-x

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstruction. In: Maddy D, Brew JJ (eds) Statistical modeling of quaternary science data. Technical Guide Quaternary Research Association, Cambridge, pp 161–254

    Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology–progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690

    Article  Google Scholar 

  • Birks HJB, Berge F, Boyle JF, Cumming BF (1990a) A palaeoecological test of the land-use hypothesis for recent lake acidification by using hill-top lakes in southwest Norway–an extended summary. Philos Trans R Soc Lond B Biol Sci 327:369–370. doi:10.1098/rstb.1990.0075

    Article  Google Scholar 

  • Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990b) Diatoms and pH reconstruction. Philos Trans R Soc Lond B 327:263–278. doi:10.1098/rstb.1990.0062

    Article  Google Scholar 

  • Blaga CI, Reichart GJ, Heiri O, Sinninghe Damsté JS (2009) Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J Paleolimol. 41:523–540. doi:10.1007/s10933-008-9242-2

  • Brooks S (2006) Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910. doi:10.1016/j.quascirev.2005.03.021

    Article  Google Scholar 

  • Brundin L (1949) Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Rep Inst Freshw Res Drottningholm 30:1–914

    Google Scholar 

  • Cody ML (1975) Towards a theory of continental species bird distributions over Mediterranean habitat gradients. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, pp 214–257

    Google Scholar 

  • Danks HV (1971) Overwintering of some north-temperate and arctic Chironomidae. 11. Chironomid biology. Can Entomol 103:1875–1910

    Article  Google Scholar 

  • Dean WE Jr (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on-ignition. Comparison with other methods. J Sediment Petrol 44:242–248

    Google Scholar 

  • Dieffenbacher-Krall AC, Vandergoes MJ, Denton GH (2007) An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids. Quat Sci Rev 26:2487–2504. doi:10.1016/j.quascirev.2007.06.016

    Article  Google Scholar 

  • Eggermont H, Verschuren D (2004a) Sub-fossil Chironomidae from East Africa. 1. Tanypodinae and Orthocladiinae. J Paleolimnol 32:383–412. doi:10.1007/s10933-004-0326-3

    Article  Google Scholar 

  • Eggermont H, Verschuren D (2004b) Sub-fossil Chironomidae from East Africa. 2. Chironominae (Chironomini and Tanytarsini). J Paleolimnol 32:413–455. doi:10.1007/s10933-004-0327-2

    Article  Google Scholar 

  • Eggermont H, Verschuren D (2007) Taxonomy and diversity of Afro-alpine Chironomidae (Insecta: Diptera) on Mount Kenya and the Rwenzori Mountains, East Africa. J Biogeogr 34:69–89. doi:10.1111/j.1365-2699.2006.01590.x

    Article  Google Scholar 

  • Eggermont H, Heiri O, Verschuren D (2006a) Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes. Quat Sci Rev 25:1966–1994. doi:10.1016/j.quascirev.2005.04.011

    Article  Google Scholar 

  • Eggermont H, De Deyne P, Verschuren D (2007a) Sieve mesh size and quantitative chironomid paleoecology. J Paleolimnol 38:329–345. doi:10.1007/s10933-006-9075-9

    Article  Google Scholar 

  • Eggermont H, Heiri O, Verschuren D (2006b) Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African Lakes. Quat Sci Rev 25:1966–1994. doi:10.1016/j.quascirev.2005.04.011

    Article  Google Scholar 

  • Eggermont H, Russell J, Schettler G, Van Damme K, Bessems I, Verschuren D (2007b) Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda-Congo). Hydrobiologia 592:151–173. doi:10.1007/s10750-007-0741-3

    Article  Google Scholar 

  • Gajewski K, Bouchard G, Wilson SE, Kurek J, Cwynar LC (2005) Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549:131–143. doi:10.1007/s10750-005-5444-z

    Article  Google Scholar 

  • Gasse F, Chalié F, Vincens A, Williams MAJ, Williamson D (2008) Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat Sci Rev 27:2316–2340. doi:10.1016/j.quascirev.2008.08.027

    Article  Google Scholar 

  • Hallaert A (2005) Respons van de chironomidengemeenschap in een bergmeer op Mt Kenya sinds de Kleine Ijstijd. Unpublished M.Sc. thesis [in dutch], University of Ghent

  • Hann BJ, Warner BG, Warwick WF (1992) Aquatic invertebrates and climate change: a comment on Walker et al. (1991). Can J Fish Aquat Sci 49:1274–1276. doi:10.1139/f92-143

    Article  Google Scholar 

  • Heegaard E, Lotter AF, Birks HJB (2006) Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? J Paleolimnol 35:507–518. doi:10.1007/s10933-005-3239-x

    Article  Google Scholar 

  • Heiri O, Lotter AF (2005) Summer temperature reconstruction in the Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516. doi:10.1080/03009480500231229

    Article  Google Scholar 

  • Heiri O, Birks HJB, Brooks S, Velle G, Willassen E (2003) Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 199:95–105. doi:10.1016/S0031-0182(03)00498-X

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetation 42:47–58. doi:10.1007/BF00048870

    Article  Google Scholar 

  • Hostetler SW, Clark PU (2000) Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling. Science 290:1747–1750. doi:10.1126/science.290.5497.1747

    Article  Google Scholar 

  • Jernelöv A, Nagell B, Svenson A (1981) Adaptation to an acid environment in Chironomus riparius (Diptera, Chironomidae) from the Smoking Hills NWT, Canada. Holarct Ecol 4:116–119

    Google Scholar 

  • Juggins S (2003) C2, user guide; software for ecological and palaeocological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne, p 69

    Google Scholar 

  • Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493. doi:10.1023/A:1024423813384

    Article  Google Scholar 

  • Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Canad J Fish Aquat Sci 63:1286–1297

    Article  Google Scholar 

  • Lindegaard C (1995) Classification of waterbodies and pollution. In: Armitage PD, Cranston P, Pinder LCV (eds) The Chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London, pp 385–404

    Google Scholar 

  • Livingstone DM, Lotter AF, Walker IR (1999) The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31:341–352. doi:10.2307/1552583

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps I: climate. J Paleolimnol 18:395–420. doi:10.1023/A:1007982008956

    Article  Google Scholar 

  • Oksanen J (1998) HOF: Ecological gradient analysis using Huisman-Olff-Fresco models. Unpublished program http://cc.oulu.fi/~jarioksa/

  • Olander H, Korhola A, Blom T (1997) Surface sediments Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J Paleolimnol 18:45–59. doi:10.1023/A:1007906609155

    Article  Google Scholar 

  • Porinchu DF, Moser KA, Munroe JS (2007) Development of a midge-based summer surface water temperature inference model for the Great Basin of the Western United States. Arct Antarct Alp Res 39:566–577. doi:10.1657/1523-0430(07-033)[PORINCHU]2.0.CO;2

    Article  Google Scholar 

  • Powers LA, Johnson TC, Werne JP, Castaneda IS, Hopmans EC, Damsté JSS, Schouten S (2005) Large temperature variability in the southern Africa tropics since the last glacial maximum. Geophys Res Lett v32, n°8, L08706 DOI 10.1029/2009GL022014

  • Quinlan R, Smol JP (2001) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342. doi:10.1023/A:1017546821591

    Article  Google Scholar 

  • Rees ABH, Cwynar LC, Cranston PS (2008) Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J Paleolimnol 40:1159–1178. doi:10.1007/s10933-008-9222-6

    Google Scholar 

  • Schouten S, Hopmans EC, Schefuss E, Damsté JSS (2002) Distributional variations in marine crenarchaetal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274

    Article  Google Scholar 

  • Scully NM (1998) Les effects de la radiation ultraviolette et des facteurs hydrodynamique sur les processus photobiochimiques des écosystèmes aquatique. PhD, Université Laval, Québec

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for windows. Centre for Biometry Wageningen, Wageningen, p 351

    Google Scholar 

  • Thienemann A (1954) Chironomus Leben, Verbreitung und wirttschaftliche Bedeutung der Chironomiden. Die Binnengewässer 20:1–834

    Google Scholar 

  • Tierney JE, Russell JM, Huang Y, Damsté JSS, Hopmans EC, Cohen AS (2008) Northern Hemisphere controls on Tropical Southeast Africa Climate During the Past 60,000 years. Science 1160485. doi:10.1126/science

  • Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462. doi:10.1016/j.quascirev.2004.10.010

    Article  Google Scholar 

  • Vincent WF, Roy S (1993) Solar ultraviolet-B radiation and aquatic primary production: damage, protection and recovery. Environ Rev 1:1–12

    Google Scholar 

  • Vinebrook RD, Leavitt PR (1998) Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiationon an alpine littoral food web. Limnol Oceanogr 43:1065–1081

    Article  Google Scholar 

  • Walker IR (1987) Chironomidae (Diptera) in paleolimnology. Quat Sci Rev 6:29–40. doi:10.1016/0277-3791(87)90014-X

    Article  Google Scholar 

  • Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Zoological indicators. Kluwer Academic, Dordrecht, pp 43–66

    Google Scholar 

  • Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction: the North American experience. Quat Sci Rev 25:1911–1925. doi:10.1016/j.quascirev.2006.01.014

    Article  Google Scholar 

  • Walker IR, Mathewes RW (1989) Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J Paleolimnol 2:61–80. doi:10.1007/BF00156985

    Article  Google Scholar 

  • Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water paleotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi:10.1023/A:1007997602935

    Article  Google Scholar 

  • Walker IR, Levesque AJ, Pienitz R, Smol JP (2003) Freshwater midges of the Yukon and adjacent Territories: a new tool for reconstructing Beringian paleoenvironments? J North Am Benthol Soc 22:323–337

    Article  Google Scholar 

  • Warner BG, Hann BJ (1987) Aquatic invertebrates as paleoclimatic indicators? Quat Res 28:427–430. doi:10.1016/0033-5894(87)90009-3

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology, 3rd edn. Academic Press London, UK

    Google Scholar 

  • Willassen E, Cranston PS (1986) Afro-tropical montane midges (Diptera, Chironomidae, Diamesa). Zool J Linn Soc 87:91–123. doi:10.1111/j.1096-3642.1986.tb01332.x

    Article  Google Scholar 

  • Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429. doi:10.1007/s10933-006-9009-6

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Fund for Scientific Research (Flanders—Belgium; project G0528.07), the Institute for the Advancement of Scientific-Technological Research in Industry (Flanders-Belgium), the US National Science Foundation (grant 7999-06), the Salomon fund (Brown University), the Leopold-III Fund for Nature Exploration and Conservation (Belgium) and the Stichting ter Bevordering van het Wetenschappelijk Onderzoek in Afrika. Fieldwork was conducted under Uganda NCST research clearances EC540 and NS21, Uganda Wildlife Authority permits UWA/TBDP/RES/50, and the Kenya government research permit MOES/001/11C. We thank all people involved in the fieldwork, and Uganda Wildlife Authority and Kenya Wildlife Service for permission to sample lakes in national parks. A. Street-Perrott is thanked for providing additional surface-sediment samples. H.E. is postdoctoral fellow with the Fund of Scientific Research (Flanders-Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilde Eggermont.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggermont, H., Heiri, O., Russell, J. et al. Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera). J Paleolimnol 43, 413–435 (2010). https://doi.org/10.1007/s10933-009-9339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-009-9339-2

Keywords

Navigation