Skip to main content

Advertisement

Log in

Shallow lake trophic status linked to late Holocene climate and human impacts

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Lake Mattamuskeet, North Carolina, USA is a large (162 km2) and shallow (mean depth = 1 m) coastal lake, which was significantly modified to support agricultural activities following European settlement in 1850. Paleolimnological proxies measured on a 400-cm sediment core collected from Lake Mattamuskeet reveal shifts in organic matter input and primary producer community structure in response to climatic and human impacts on the lake during the late Holocene. Stratigraphic changes in organic matter content, nutrients, metals, lignin phenols and photosynthetic pigments were used to divide the sediment core into three intervals. Interval I includes sediment deposited between A.D. 360–1584 and indicates a clear-water, sand-bottom state with low algal abundance. In addition, the lake catchment area experienced two significant fires during this interval that were recorded as charcoal layers in the core around A.D. 360 and A.D. 1435 (calibrated 14C AMS dates). Trophic structure changed with the onset of Interval II (A.D. 1584–1860) when total algal abundance increased, and the primary producer community was comprised primarily of diatoms, chrysophytes, cryptophytes and cyanobacteria. During this interval there was also an increase in terrestrial organic material input into the lake as well as a shift in plant type from woody gymnosperms to non-woody angiosperms as determined from lignin data. Sediment deposited in Lake Mattamuskeet following European settlement (Interval III, A.D. 1860-present) suggests a dramatic increase in organic-matter deposition, metals, primary-producer abundance and the onset of cyanobacterial dominance. Sedimentary evidence indicates that shallow-water primary producers can respond rapidly to climate change and human development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen RR, Crowson BL, Riggs SR (1979) The geology of Lake Phelps. Washington County Planning Department Report

  • Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35. doi:10.1007/BF00028424

    Article  Google Scholar 

  • Barefoot DW (1995) Touring the backroads of North Carolina’s upper coast. John F. Blair Publishing, Winston-Salem, NC

    Google Scholar 

  • Benkert K (1990) Limnological assessment of Lake Mattamuskeet and Pungo Lake in relation to metal residue in biota and sediments. US Fish and Wildlife Service, Raleigh, NC, p 74

    Google Scholar 

  • Bianchi TS, Rolff C, Lambert CD (1997) Sources and composition of particulate organic carbon in the Baltic Sea: the use of plant pigments and lignin-phenols as biomarkers. Mar Ecol Prog Ser 156:25–31. doi:10.3354/meps156025

    Article  Google Scholar 

  • Bianchi TS, Westman P, Rolf C, Engelhaupt E, Andren T, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol Oceanogr 45(3):716–726

    Google Scholar 

  • Bianchi TS, Mitra S, McKee B (2002) Sources of terrestrially-derived carbon in the Lower Mississippe River and Louisiana shelf: implications for differential sedimentation and transport at the coastal margin. Mar Chem 77:211–222. doi:10.1016/S0304-4203(01)00088-3

    Article  Google Scholar 

  • Bianchi TS, Filley T, Dria K, Pather P (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim Cosmochim Acta 68:959–967. doi:10.1016/j.gca.2003.07.011

    Article  Google Scholar 

  • Bianchi TS, Wysocki LA, Stewart M, Filley TR, McKee BA (2007) Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River. Geochim Cosmochim Acta 71:4425–4437. doi:10.1016/j.gca.2007.07.011

    Article  Google Scholar 

  • Bracco R, Inda H, Puerto LD, Castiñeira C, Sprechmann P, García-Rodríquez F (2005) Relationships between Holocene sea-level variations, trophic development, and climatic change in Negra Lagoon, Southern Uruguay. J Paleolimnol 33:253–263. doi:10.1007/s10933-004-4934-8

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221. doi:10.1023/A:1008078222806

    Article  Google Scholar 

  • Casterlin ME, Reynolds WW, Lindquist DG, Yarbrough CG (1984) Algal and physiochemical indicators of eutrophication in a lake harboring endemic species: Lake Waccamaw, North Carolina. J Elisha Mitchell Sci Soc 100:83–103

    Google Scholar 

  • Davies SJ, Metcalfe SE, MacKenzie AB, Newton AJ, Endfield GH, Farmer JG (2004) Evironmental changes in the Zirahuén Basin, Michoacán, Mexico, during the last 1000 years. J Paleolimnol 31:77–98. doi:10.1023/B:JOPL.0000013284.21726.3d

    Article  Google Scholar 

  • Duan SW, Bianchi TS, Sampere TP (2007) Temporal variability in the composition and abundance of terrestrially-derived organic matter in the lower Mississippi and Pearl Rivers. Mar Chem 103:172–184. doi:10.1016/j.marchem.2006.07.003

    Article  Google Scholar 

  • Engstrom DR, Wright DI (2002) Sedimentological effects of aeration-induced lake circulation. Lake Res Manage 18:201–214

    Article  Google Scholar 

  • Firestone RB, West A, Warwich-Smith S (2006) The cycle of cosmic catastrophies: flood, fire, and famine in the history of civilization. Bear & Company, Rochester, Vermont

    Google Scholar 

  • Forrest LC (2000) Lake Mattamuskeet: New Holland and Hyde County. Arcadia Publishing, Charleston, South Carolina

    Google Scholar 

  • Frey DG (1953) Regional aspects of the late-glacial and post-glacial pollen succession of southeastern North Carolina. Ecol Monogr 23:289–313. doi:10.2307/1943595

    Article  Google Scholar 

  • Gaiser EE, Brooks MJ, Kenney WF, Schelske CL, Taylor BE (2004) Interpreting the hydrological history of a temporary pond from chemical and microscopic characterization of siliceous microfossils. J Paleolimnol 31:63–76. doi:10.1023/B:JOPL.0000013280.72275.81

    Article  Google Scholar 

  • García-Rodríquez F, Mazzeo N, Sprechmann P, Metzeltin D, Sosa F et al (2002) Paleolimnological assessment of human impacts in Lake Blanca, SE Uraguay. J Paleolimnol 28:457–468. doi:10.1023/A:1021616811341

    Article  Google Scholar 

  • García-Rodríquez F, Sprechmann P, Metzeltin D, Scafati L, Melendi DL et al (2004) Holocene trophic state changes in relation to sea level variation in Lake Blanca, SE Uruguay. J Paleolimnol 31:99–115. doi:10.1023/B:JOPL.0000013281.31891.8e

    Article  Google Scholar 

  • Goñi MA, Hedges JI (1992) Lignin dimmers: structures, distribution, and potential geochemical applications. Geochim Cosmochim Acta 56:4025–4043. doi:10.1016/0016-7037(92)90014-A

    Article  Google Scholar 

  • Goñi MA, Teixeira MJ, Perkey DW (2003) Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar Coast Shelf Sci 57:1023–1048. doi:10.1016/S0272-7714(03)00008-8

    Article  Google Scholar 

  • Gordon ES, Goni MA (2004) Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margin. Mar Chem 92:331–352. doi:10.1016/j.marchem.2004.06.035

    Article  Google Scholar 

  • Haberzettl T, Wille M, Fey M, Janssen S, Lucke A et al (2006) Environmental change and fire history of southern Patagonia (Argentina) during the last five centuries. Quat Int 158:72–82. doi:10.1016/j.quaint.2006.05.029

    Article  Google Scholar 

  • Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer-Verlag, New York, USA

    Google Scholar 

  • Hedges JI, Ertel J (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178. doi:10.1021/ac00239a007

    Article  Google Scholar 

  • Hedges JI, Clark WA, Quay P, Richey JE, Devol AH, Santos UdM (1986) Compositions and fluxes of particulate organic material in the Amazon River. Limnol Oceanogr 31:717–738

    Article  Google Scholar 

  • Hodgson DA, Verleyen E, Squier AH, Sabbe K, Keely BJ, Saunders KM et al (2006) Interglacial environments of coastal east Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (Last Interglacial) lake-sediment records. Quat Sci Rev 25(1–2):179–197. doi:10.1016/j.quascirev.2005.03.004

    Article  Google Scholar 

  • Inda H, García-Rodríquez F, Puerto Ld, Acevedo V, Metzeltin D (2006) Relationships between trophic state, paleosalinity and climatic changes during the first Holocene marine transgression in Rocha Lagoon, southern Uruguay. J Paleolimnol 35:699–713. doi:10.1007/s10933-005-4841-7

    Article  Google Scholar 

  • Ingram RL (1987) Peat deposits of North Carolina. Department of Natural Resources and Community Development, Division of Land Resources, Geological Survey Section. Bulletin 88, Raleigh, NC

  • Jeffrey SW, Mantoura RFC, Wright SW (eds) (1997) Phytoplankton pigments in oceanography. UNESCO Publishing, Paris

    Google Scholar 

  • Kenney WF, Waters MN, Schelske CL, Brenner M (2002) Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakes. J Paleolimnol 27:367–377. doi:10.1023/A:1016075012581

    Article  Google Scholar 

  • Leavitt PR (1993) A review of factors that regulate carotenoids and chlorophyll deposition and fossil pigment abundance. J Paleolimnol 9:109–127. doi:10.1007/BF00677513

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJP, Last WM (eds) Tracking environmental change using lake sediments, terrestrial, algal, and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 295–325

    Chapter  Google Scholar 

  • Leavitt PR, Cumming BF, Smol JP, Reasoner M, Pienitz R, Hodgson DA (2003) Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48(5):2062–2069

    Google Scholar 

  • McGowan S, Leavitt PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV (2005) Controls of algal abundance and community composition during ecosystem state change. Ecology 86:2200–2211. doi:10.1890/04-1029

    Article  Google Scholar 

  • Onstad GD, Canfield DE, Quay PD, Hedges JI (2000) Sources of particulate organic matter in rivers from the continental USA: lignin phenol and stable carbon isotope compositions. Geochim Cosmochim Acta 64(20):3539–3546. doi:10.1016/S0016-7037(00)00451-8

    Article  Google Scholar 

  • Patione A, Graham MD, Leavitt PR (2006) Spatial variation of nitrogen fixation in lakes of the northern Great Plains. Limnol Oceanogr 51(4):1665–1677

    Google Scholar 

  • Pienitz R, Smol JP, Last WM, Leavitt PR, Cumming BF (2000) Multi-proxy Holocene palaeoclimatic record from a saline lake in the Canadian Subartic. Holoc 10(6):673–686. doi:10.1191/09596830094935

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E et al (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–1058

    Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Kluwer Academic Publishers, London, UK

    Google Scholar 

  • Schelske CL, Peplow A, Brenner M, Spencer CN (1994) Low-background gamma counting: applications for 210Pb dating of sediments. J Paleolimnol 10:115–128. doi:10.1007/BF00682508

    Article  Google Scholar 

  • Schelske CL, Lowe EF, Battoe LE, Brenner M, Coveney MF, Kenney WF (2005) Abrupt biological response to hydrologic and land-use changes in Lake Apopka, Florida, USA. Ambio 34:192–198. doi:10.1639/0044-7447(2005)034[0192:ABRTHA]2.0.CO;2

    Google Scholar 

  • Stahle DW, Cleaveland MK (1994) Tree-ring reconstructed rainfall over the southeastern USA during the Medieval Warm Period and Little Ice Age. Clim Change 26:199–212. doi:10.1007/BF01092414

    Article  Google Scholar 

  • Stahle DW, Cleaveland MK, Hehr JG (1988) North Carolina climate changes reconstructed from tree rings: A. D. 372 to 1985. Science 240:1517–1519. doi:10.1126/science.240.4858.1517

    Article  Google Scholar 

  • Stahle DW, Cleaveland MK, Blanton DB, Therrell MD, Gay DA (1998) The Lost Colony and Jamestown droughts. Science 280:564–567. doi:10.1126/science.280.5363.564

    Article  Google Scholar 

  • Stahle DW, Fye FK, Cook ER, Griffin RD (2007) Tree-ring reconstructed megadroughts over North America since A. D. 1300. Clim Change 83:117–131. doi:10.1007/s10584-006-9171-x

    Article  Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Vega AJ, Sui CH, Lau KM (1998) Interannual to interdecadal variations of the regionalized surface climate of the United States and relationships to generalized flow parameters. Phys Geog 19:271–291

    Google Scholar 

  • Vega AJ, Rohli RV, Sui CH (1999) Climatic relationships to Chesapeake Bay salinity during Southern Oscillation extremes. Phys Geog 20:468–490

    Google Scholar 

  • Waters MN (2007) Historic transitions in primary producer communities in eastern North Carolina lakes. PhD Dissertation, University of North Carolina, Chapel Hill

  • Whitehead DR (1981) Late-Pleistocene vegetational changes in northeastern North Carolina. Ecol Monogr 51(4):451–471. doi:10.2307/2937324

    Article  Google Scholar 

  • Willard DA, Cronin TM, Verardo S (2003) Late-Holocene climate and ecosystem history from Chesapeake Bay sediment cores, USA. Holo 13:201–214. doi:10.1191/0959683603hl607rp

    Article  Google Scholar 

  • Wyn B, Sweetman JN, Leavitt PR, Donald DB (2007) Historical metal concentrations in lacustrine food webs revealed using fossil ephippa from Daphnia. Ecol Appl 17(3):754–764. doi:10.1890/06-0868

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded through two graduate research fellowships to MNW from the University of North Carolina Coastal Studies Institute and NC Beautiful and a RJR Junior Faculty Award to MFP. Dr. C. S. Martens and his research students aided in gravimetric and TOC/TN analysis. Scott Peterson provided extensive assistance and guidance with lignin-phenol analysis. Metals and nutrients were analyzed at Waters Agricultural Laboratories in Camilla, GA. We are very grateful to Dr. C. L. Schelske, Dr. D. M. Leech and two anonymous reviewers, whose comments greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. Waters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, M.N., Piehler, M.F., Rodriguez, A.B. et al. Shallow lake trophic status linked to late Holocene climate and human impacts. J Paleolimnol 42, 51–64 (2009). https://doi.org/10.1007/s10933-008-9247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9247-x

Keywords

Navigation