Skip to main content
Log in

Understanding the Specific Implications of Amino Acids in the Antibody Development

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody’s architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) The adaptive immune system. In: Molecular Biology of the Cell. 4th edition. Garland science. https://www.ncbi.nlm.nih.gov/books/NBK21070/

  2. Nedeva C (2021) Inflammation and cell death of the innate and adaptive immune System during sepsis. Biomolecules 11(7):1011. https://doi.org/10.3390/biom11071011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. InformedHealth.org [Internet]. Cologne, Germany: Institute for quality and efficiency in health care (IQWiG); 2006. The innate and adaptive immune systems. [Updated 2020 Jul 30]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279396/

  4. Born WK, Huang Y, Zeng W, Torres RM, O’Brien RL (2016) A special connection between γδ T cells and natural antibodies? Arch Immunol Ther Exp (Warsz) 64(6):455–462. https://doi.org/10.1007/s00005-016-0403-0

    Article  CAS  PubMed  Google Scholar 

  5. Holodick NE, Rodríguez-Zhurbenko N, Hernández AM (2017) Defining natural antibodies Front Immunol 8:872. https://doi.org/10.3389/fimmu.2017.00872

    Article  CAS  PubMed  Google Scholar 

  6. Rifai A, Fadden K, Morrison SL, Chintalacharuvu KR (2000) The N-glycans determine the differential blood clearance and hepatic uptake of human immunoglobulin (Ig)A1 and IgA2 isotypes. J Exp Med 191(12):2171–2182. https://doi.org/10.1084/jem.191.12.2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vieira P, Rajewsky K (1988) The half-lives of serum immunoglobulins in adult mice. Eur J Immunol 18(2):313–316. https://doi.org/10.1002/eji.1830180221

    Article  CAS  PubMed  Google Scholar 

  8. Binder CJ (2012) Naturally occurring IgM antibodies to oxidation-specific epitopes. Adv Exp Med Biol 750:2–13. https://doi.org/10.1007/978-1-4614-3461-0_1

    Article  CAS  PubMed  Google Scholar 

  9. Lee DCP, Raman R, Ghafar NA, Budigi Y (2021) An antibody engineering platform using amino acid networks: A case study in development of antiviral therapeutics. Antiviral Res 192:105105. https://doi.org/10.1016/j.antiviral.2021.105105

    Article  CAS  PubMed  Google Scholar 

  10. Chiu ML, Goulet DR, Teplyakov A, Gilliland GL (2019) Antibody structure and function: The basis for engineering therapeutics. Antibodies (Basel) 8(4):55. https://doi.org/10.3390/antib8040055

    Article  CAS  PubMed  Google Scholar 

  11. Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 92(5):1254–1256. https://doi.org/10.1073/pnas.92.5.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Batista FD, Neuberger MS (1998) Affinity dependence of the B-cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8(6):751–759. https://doi.org/10.1016/s1074-7613(00)80580-4

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury PS, Pastan I (1999) Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat Biotechnol 17(6):568–572. https://doi.org/10.1038/9872

    Article  CAS  PubMed  Google Scholar 

  14. Neuberger MS, Milstein C (1995) Somatic hypermutation. Curr Opin Immunol 7(2):248–254. https://doi.org/10.1016/0952-7915(95)80010-7

    Article  CAS  PubMed  Google Scholar 

  15. Ducancel F, Muller BH (2012) Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs 4(4):445–457. https://doi.org/10.4161/mabs.20776

    Article  PubMed  PubMed Central  Google Scholar 

  16. Beers R, Chowdhury P, Bigner D, Pastan I (2000) Immunotoxins with increased activity against epidermal growth factor receptor vIII-expressing cells produced by antibody phage display. Clin Cancer Res 6(7):2835–2843

    CAS  PubMed  Google Scholar 

  17. Ho M, Kreitman RJ, Onda M, Pastan I (2005) In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J Biol Chem 280(1):607–617. https://doi.org/10.1074/jbc.M409783200

    Article  CAS  PubMed  Google Scholar 

  18. Salvatore G, Beers R, Margulies I, Kreitman RJ, Pastan I (2002) Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin Cancer Res 8(4):995–1002

    CAS  PubMed  Google Scholar 

  19. Nelson B, Sidhu SS (2012) Synthetic antibody libraries. Methods Mol Biol 899:27–41. https://doi.org/10.1007/978-1-61779-921-1_2

    Article  CAS  PubMed  Google Scholar 

  20. Patel R, Verma P, Nagraj AK, Gavade A, Sharma OP, Patil J (2023) Significance of antibody numbering systems in the development of antibody engineering. Hum Antibodies 31(4):71–80. https://doi.org/10.3233/HAB-230014

    Article  CAS  PubMed  Google Scholar 

  21. Zhong X, D’Antona AM (2022) A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production. Front Immunol 13:1072702. https://doi.org/10.3389/fimmu.2022.1072702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leiro V, Moreno PM, Sarmento B, Durão J, Gales L, Pêgo AP, Barrias CC (2017) 1 - Design and preparation of biomimetic and bioinspired materials, Bioinspired Materials for Medical Applications 1–44. https://doi.org/10.1016/B978-0-08-100741-9.00001-2

  23. Fujiwara K, Toda H, Ikeguchi M (2012) Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type. BMC Struct Biol 12:18. https://doi.org/10.1186/1472-6807-12-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bingaman AW, Patke DS, Mane VR (2005) Novel phenotypes and migratory properties distinguish memory CD4 T-cell subsets in lymphoid and lung tissue. Eur J Immunol 35(11):3173–3186. https://doi.org/10.1002/eji.200526004

    Article  CAS  PubMed  Google Scholar 

  25. Osajima T, Hoshino T (2016) Roles of the respective loops at complementarity determining region on the antigen-antibody recognition. Comput Biol Chem 64:368–383. https://doi.org/10.1016/j.compbiolchem.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  26. Wang M, Zhu D, Zhu J, Nussinov R, Ma B (2018) Local and global anatomy of antibody-protein antigen recognition. J Mol Recognit 31(5):e2693. https://doi.org/10.1002/jmr.2693

    Article  CAS  PubMed  Google Scholar 

  27. Ramaraj T, Angel T, Dratz EA, Jesaitis AJ (1824) Mumey B (2012) Antigen-antibody interface properties: composition, residue interactions, and features of 53 nonredundant structures. Biochim Biophys Acta 3:520–532. https://doi.org/10.1016/j.bbapap.2011.12.007

    Article  CAS  Google Scholar 

  28. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R (1997) Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 6(1):53–64. https://doi.org/10.1002/pro.5560060106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barchi JJ Jr, Strain CN (2023) The effect of a methyl group on structure and function: Serine vs threonine glycosylation and phosphorylation. Front Mol Biosci 10:1117850. https://doi.org/10.3389/fmolb.2023.1117850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rabia LA, Zhang Y, Ludwig SD, Julian MC, Tessier PM (2018) Net charge of antibody complementarity-determining regions is a key predictor of specificity. Protein Eng Des Sel 31(11):409–418. https://doi.org/10.1093/protein/gzz002

    Article  CAS  PubMed  Google Scholar 

  31. Perchiacca JM, Lee CC, Tessier PM (2014) Optimal charged mutations in the complementarity-determining regions that prevent domain antibody aggregation are dependent on the antibody scaffold. Protein Eng Des Sel 27(2):29–39. https://doi.org/10.1093/protein/gzt058

    Article  CAS  PubMed  Google Scholar 

  32. Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191. https://doi.org/10.1093/protein/13.3.179

    Article  CAS  PubMed  Google Scholar 

  33. Ren S (2023) Effects of arginine in therapeutic protein formulations: a decade review and perspectives. Antib Ther 6(4):265–276. https://doi.org/10.1093/abt/tbad022

    Article  CAS  PubMed  Google Scholar 

  34. Michael W (2013) The merck index: an encyclopedia of chemicals, drugs, and biologicals, 15th edition edited by M.J. O'Neil, royal society of chemistry, Cambridge, UK ISBN 9781849736701; 2708 pages $150 with 1-year free access to the Merck index online. Drug Dev Res 74(5):339. https://doi.org/10.1002/ddr.21085

  35. Martí I, Líndez AA, Reith W (2021) Arginine-dependent immune responses. Cell Mol Life Sci 78(13):5303–5324. https://doi.org/10.1007/s00018-021-03828-4

    Article  CAS  Google Scholar 

  36. Barile MF, Leventhal BG (1968) Possible mechanism for Mycoplasma inhibition of lymphocyte transformation induced by phytohaemagglutinin. Nature 219(5155):750–752. https://doi.org/10.1038/219751a0

    Article  CAS  PubMed  Google Scholar 

  37. Runquist JA, Harrison DH, Miziorko HM (1998) Functional evaluation of invariant arginines situated in the mobile lid domain of phosphoribulokinase. Biochemistry 37(5):1221–1226. https://doi.org/10.1021/bi972052f

    Article  CAS  PubMed  Google Scholar 

  38. Iyer PP, Ferry JG (2001) Role of arginines in coenzyme A binding and catalysis by the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 183(14):4244–4250. https://doi.org/10.1128/JB.183.14.4244-4250.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yokota K, Satou K, Ohki SY (2006) Comparative analysis of protein thermostability: Differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteins. Sci Technol Adv Mater 7(3):255. https://doi.org/10.1016/j.stam.2006.03.003

    Article  CAS  Google Scholar 

  40. Borders CL Jr, Broadwater JA, Bekeny PA (1994) A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Sci 3(4):541–548. https://doi.org/10.1002/pro.5560030402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Donald JE, Kulp DW, DeGrado WF (2011) Salt bridges: geometrically specific, designable interactions. Proteins 79(3):898–915. https://doi.org/10.1002/prot.22927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giles K (2004) Bioinformatics for geneticists. In: Barnes MR, Gray IC (eds) BAMBED 32(3):210–212. https://doi.org/10.1002/bmb.2004.494032049999

  43. Vernon RM, Chong PA, Tsang B (2018) Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 7:e31486. https://doi.org/10.7554/eLife.31486

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ferrari L, Stucchi R, Konstantoulea K (2020) Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat Commun 11(1):571. https://doi.org/10.1038/s41467-019-13745-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cloutier TK, Sudrik C, Mody N, Hasige SA, Trout BL (2020) Molecular computations of preferential interactions of proline, arginine HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity. MAbs 12(1):1816312

    Article  PubMed  PubMed Central  Google Scholar 

  46. Březina K, Duboué-Dijon E, Palivec V (2018) Can arginine inhibit insulin aggregation? A combined protein crystallography, capillary electrophoresis, and molecular simulation study. J Phys Chem B 122(44):10069–10076. https://doi.org/10.1021/acs.jpcb.8b06557

    Article  CAS  PubMed  Google Scholar 

  47. Crowley PB, Golovin A (2005) Cation-pi interactions in protein-protein interfaces. Proteins 59(2):231–239. https://doi.org/10.1002/prot.20417

    Article  CAS  PubMed  Google Scholar 

  48. Strickler SS, Gribenko AV, Gribenko AV (2006) Protein stability and surface electrostatics: a charged relationship. Biochemistry 45(9):2761–2766. https://doi.org/10.1021/bi0600143

    Article  CAS  PubMed  Google Scholar 

  49. Barlow DJ, Thornton JM (1983) Ion-pairs in proteins. J Mol Biol 168(4):867–885. https://doi.org/10.1016/s0022-2836(83)80079-5

    Article  CAS  PubMed  Google Scholar 

  50. Doig AJ (2017) Frozen, but no accident - why the 20 standard amino acids were selected. FEBS J 284(9):1296–1305. https://doi.org/10.1111/febs.13982

    Article  CAS  PubMed  Google Scholar 

  51. Livesay DR, Subramaniam S (2004) Conserved sequence and structure association motifs in antibody-protein and antibody-hapten complexes. Protein Eng Des Sel 17(5):463–472. https://doi.org/10.1093/protein/gzh058

    Article  CAS  PubMed  Google Scholar 

  52. Brüggemann M, Müller HJ, Burger C, Rajewsky K (1986) Idiotypic selection of an antibody mutant with changed hapten binding specificity, resulting from a point mutation in position 50 of the heavy chain. EMBO J 5(7):1561–1566. https://doi.org/10.1002/j.1460-2075.1986.tb04397.x

    Article  PubMed  PubMed Central  Google Scholar 

  53. Short MK, Krykbaev RA, Jeffrey PD, Margolies MN (2002) Complementary combining site contact residue mutations of the anti-digoxin Fab 26–10 permit high affinity wild-type binding. J Biol Chem 277(19):16365–16370. https://doi.org/10.1074/jbc.M110444200

    Article  CAS  PubMed  Google Scholar 

  54. Birtalan S, Fisher RD, Sidhu SS (2010) The functional capacity of the natural amino acids for molecular recognition. Mol Biosyst 6(7):1186–1194. https://doi.org/10.1039/b927393j

    Article  CAS  PubMed  Google Scholar 

  55. Birtalan S, Zhang Y, Fellouse FA, Shao L, Schaefer G, Sidhu SS (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377(5):1518–1528. https://doi.org/10.1016/j.jmb.2008.01.093

    Article  CAS  PubMed  Google Scholar 

  56. Falconer RJ, Chan C, Hughes K, Munro TP (2011) Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients. J Chem Technol Biotechnol 86(7):942–948. https://doi.org/10.1002/jctb.2657

    Article  CAS  Google Scholar 

  57. Kim JH, Song DH, Youn SJ (2016) Crystal structures of mono- and bispecific diabodies and reduction of their structural flexibility by introduction of disulfide bridges at the Fv interface. Sci Rep 6:34515. https://doi.org/10.1038/srep34515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tiller KE, Li L, Kumar S, Julian MC, Garde S, Tessier PM (2017) Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs. J Biol Chem 292(40):16638–16652. https://doi.org/10.1074/jbc.M117.783837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ho BK, Coutsias EA, Seok C, Dill KA (2005) The flexibility in the proline ring couples to the protein backbone. Protein Sci 14(4):1011–8. https://doi.org/10.1110/ps.041156905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. George RA, Heringa J (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15(11):871–879. https://doi.org/10.1093/protein/15.11.871

    Article  CAS  PubMed  Google Scholar 

  61. MacArthur MW, Thornton JM (1991) Influence of proline residues on protein conformation. J Mol Biol 218(2):397–412. https://doi.org/10.1016/0022-2836(91)90721-h

    Article  CAS  PubMed  Google Scholar 

  62. Tchernychev B, Cabilly S, Wilchek M (1997) The epitopes for natural polyreactive antibodies are rich in proline. Proc Natl Acad Sci USA 94(12):6335–6339. https://doi.org/10.1073/pnas.94.12.6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schuurman J, Perdok GJ, Gorter AD, Aalberse RC (2001) The interheavy chain disulfide bonds of IgG4 are in equilibrium with intrachain disulfide bonds. Mol Immunol 38:1–8. https://doi.org/10.1016/s0161-5890(01)00050-5

    Article  CAS  PubMed  Google Scholar 

  64. Angal S, King DJ, Bodmer MW, Turner A, Lawson AD, Roberts G (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108. https://doi.org/10.1016/0161-5890(93)90432-b

    Article  CAS  PubMed  Google Scholar 

  65. Feige MJ, Buchner J (2014) Principles and engineering of antibody folding and assembly. Biochim Biophys Acta 1844:2024–2031. https://doi.org/10.1016/j.bbapap.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  66. Guttman M, Padte NN, Huang Y (2020) The influence of proline isomerization on potency and stability of anti-HIV antibody 10E8. Sci Rep 10(1):14313. https://doi.org/10.1038/s41598-020-71184-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hagan JB, Wasserman RL, Baggish JS (2012) Safety of L-proline as a stabilizer for immunoglobulin products [published correction appears in Expert Rev Clin Immunol 8(4):]. Expert Rev Clin Immunol 8(2):169–178. https://doi.org/10.1586/eci.11.97

    Article  CAS  PubMed  Google Scholar 

  68. Cohen IR (2014) Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: a comprehensive review. J Autoimmun 54:112–117. https://doi.org/10.1016/j.jaut.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  69. Berger M (2011) L-proline-stabilized human IgG: Privigen® 10% for intravenous use and Hizentra® 20% for subcutaneous use. Immunotherapy 3(2):163–176. https://doi.org/10.2217/imt.10.108

    Article  CAS  PubMed  Google Scholar 

  70. Szenczi A, Kardos J, Medgyesi GA, Závodszky P (2006) The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 34(1):5–14. https://doi.org/10.1016/j.biologicals.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  71. Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42(32):9515–9524. https://doi.org/10.1021/bi0350710

    Article  CAS  PubMed  Google Scholar 

  72. Hung JJ, Dear BJ, Dinin AK (2018) Improving viscosity and stability of a highly concentrated monoclonal antibody solution with concentrated proline. Pharm Res 35(7):133. https://doi.org/10.1007/s11095-018-2398-1

    Article  CAS  PubMed  Google Scholar 

  73. Bordo D, Argos P (1991) Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Bio 217(4):721–729. https://doi.org/10.1016/0022-2836(91)90528-e

    Article  CAS  Google Scholar 

  74. Karplus PA (1997) Hydrophobicity regained. Protein Sci 6(6):1302–1307. https://doi.org/10.1002/pro.5560060618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Roesgaard MA, Lundsgaard JE, Newcombe EA (2022) Deciphering the alphabet of disorder-Glu and Asp Act differently on local but not global properties. Biomolecules 12(10):1426. https://doi.org/10.3390/biom12101426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trevino SR, Scholtz JM, Pace CN (2007) Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J Mol Biol 366(2):449–460. https://doi.org/10.1016/j.jmb.2006.10.026

    Article  CAS  PubMed  Google Scholar 

  77. Trevino SR, Scholtz JM, Pace CN (2008) Measuring and increasing protein solubility. J Pharm Sci 97(10):4155–4166. https://doi.org/10.1002/jps.21327

    Article  CAS  PubMed  Google Scholar 

  78. Kheddo P, Tracka M, Armer J (2014) The effect of arginine glutamate on the stability of monoclonal antibodies in solution. Int J Pharm 473(1–2):126–133. https://doi.org/10.1016/j.ijpharm.2014.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu YD, Goetze AM, Bass RB, Flynn GC (2011) N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. J Biol Chem 286(13):11211–11217. https://doi.org/10.1074/jbc.M110.185041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu L, Vizel A, Huff MB, Young M, Remmele RL Jr, He B (2006) Investigation of N-terminal glutamate cyclization of recombinant monoclonal antibody in formulation development. J Pharm Biomed Anal 42(4):455–463. https://doi.org/10.1016/j.jpba.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  81. Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA (2023) Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chem Sci 14(29):7782–7817. https://doi.org/10.1039/d3sc02543h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Choi BH, Coloff JL (2019) The diverse functions of non-essential amino acids in cancer. Cancers (Basel) 11(5):675. https://doi.org/10.3390/cancers110506755

    Article  CAS  PubMed  Google Scholar 

  83. Gambini L, Baggio C, Udompholkul P (2019) Covalent inhibitors of protein-protein interactions targeting lysine, tyrosine, or histidine residues. J Med Chem 62(11):5616–5627. https://doi.org/10.1021/acs.jmedchem.9b00561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zarschler K, Janesch B, Pabst M, Altmann F, Messner P, Schäffer C (2010) Protein tyrosine O-glycosylation–a rather unexplored prokaryotic glycosylation system. Glycobiology 20(6):787–798. https://doi.org/10.1093/glycob/cwq035

    Article  PubMed  Google Scholar 

  85. Mann M, Jensen ON (2003) Proteomic analysis of posttranslational modifications. Nat Biotechnol 21(3):255–261. https://doi.org/10.1038/nbt0303-255

    Article  CAS  PubMed  Google Scholar 

  86. Peng HP, Lee KH, Jian JW, Yang AS (2014) Origins of specificity and affinity in antibody–protein interactions. Proc Natl Acad Sci USA 111:E2656-2665. https://doi.org/10.1073/pnas.1401131111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blech M, Peter D, Fischer P, Bauer MMT, Hafner M, Zeeb M, Nar H (2013) One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1β. J Mol Biol 425:94–111. https://doi.org/10.1016/j.jmb.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  88. Lucas X, Bauzá A, Frontera A, Quiñonero D (2016) A thorough anion-π interaction study in biomolecules: on the importance of cooperativity effects. Chem Sci 7(2):1038–1050. https://doi.org/10.1039/c5sc01386k

    Article  CAS  PubMed  Google Scholar 

  89. Zemlin M, Klinger M, Link J (2003) Expressed murine and human CDR-H3 intervals of equal length exhibit distinct repertoires that differ in their amino acid composition and predicted range of structures. J Mol Biol 334(4):733–749. https://doi.org/10.1016/j.jmb.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  90. Ivanov II, Schelonka RL, Zhuang Y, Gartland GL, Zemlin M, Schroeder HW Jr (2005) Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B-cell progenitors. J Immunol 174(12):7773–7780. https://doi.org/10.4049/jimmunol.174.12.7773

    Article  CAS  PubMed  Google Scholar 

  91. Clark LA, Ganesan S, Papp S, van Vlijmen HW (2006) Trends in antibody sequence changes during the somatic hypermutation process. J Immunol 177(1):333–340. https://doi.org/10.4049/jimmunol.177.1.333

    Article  CAS  PubMed  Google Scholar 

  92. Fellouse FA, Barthelemy PA, Kelley RF, Sidhu SS (2006) Tyrosine plays a dominant functional role in the paratope of a synthetic antibody derived from a four amino acid code. J Mol Biol 357(1):100–114. https://doi.org/10.1016/j.jmb.2005.11.092

    Article  CAS  PubMed  Google Scholar 

  93. Osajima T, Suzuki M, Neya S, Hoshino T (2014) Computational and statistical study on the molecular interaction between antigen and antibody. J Mol Graph Model 53:128–139. https://doi.org/10.1016/j.jmgm.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  94. Chen YP, Cheng YF, Li XH (2017) Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult Sci 96(2):405–413. https://doi.org/10.3382/ps/pew240

    Article  CAS  PubMed  Google Scholar 

  95. Zhang Q, Chen X, Eicher SD, Ajuwon KM, Applegate TJ (2016) Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks. Br J Nutr 116(12):2030–2043. https://doi.org/10.1017/S0007114516003238

    Article  CAS  PubMed  Google Scholar 

  96. Gómez-López VM, Viramontes-Pintos A, Ontiveros-Torres MÁ (2021) Tau protein phosphorylated at threonine-231 is expressed abundantly in the cerebellum in prion encephalopathies. J Alzheimers Dis 81(2):769–785. https://doi.org/10.3233/JAD-201308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Barnwal B, Mok CK, Wu J (2015) A monoclonal antibody binds to threonine 49 in the nonstructural 1 protein of influenza A virus and interferes with its ability to modulate viral replication. Antiviral Res 116:55–61. https://doi.org/10.1016/j.antiviral.2015.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu H, Kofoed C, Li M (2019) Computational evolution of threonine-rich β-Hairpin peptides mimicking specificity and affinity of antibodies. ACS Cent Sci 5(2):259–269. https://doi.org/10.1021/acscentsci.8b00614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morgan AA, Rubenstein E (2013) Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS ONE 8(1):e53785. https://doi.org/10.1371/journal.pone.0053785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yan BX, Sun YQ (1997) Glycine residues provide flexibility for enzyme active sites. J Biol Chem 272(6):3190–3194. https://doi.org/10.1074/jbc.272.6.3190

    Article  CAS  PubMed  Google Scholar 

  101. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Krieger F, Möglich A, Kiefhaber T (2005) Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains. J Am Chem Soc 127(10):3346–3352. https://doi.org/10.1021/ja042798i

    Article  CAS  PubMed  Google Scholar 

  103. Trier NH, Hansen PR, Vedeler CA, Somnier FE, Houen G (2012) Identification of continuous epitopes of HuD antibodies related to paraneoplastic diseases/small cell lung cancer. J Neuroimmunol 243(1–2):25–33. https://doi.org/10.1016/j.jneuroim.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  104. Kelly RL, Le D, Zhao J, Wittrup KD (2018) Reduction of nonspecificity motifs in synthetic antibody libraries. J Mol Biol 430(1):119–130. https://doi.org/10.1016/j.jmb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  105. Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P (2014) Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes. J Mol Biol 426(22):3729–3743. https://doi.org/10.1016/j.jmb.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  106. Luo M (2018) Chemical and biochemical perspectives of protein lysine methylation. Chem Rev 118(14):6656–6705. https://doi.org/10.1021/acs.chemrev.8b00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hermanson GT (2013) Bioconjugate Techniques. Netherlands: Elsevier Science (3rd edition). https://books.google.com/books/about/Bioconjugate_Techniques.html?id=6aO-207lhdgC.

  108. Nakanishi T, Tsumoto K, Yokota A, Kondo H, Kumagai I (2008) Critical contribution of VH-VL interaction to reshaping of an antibody: the case of humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci 17(2):261–270. https://doi.org/10.1110/ps.073156708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schneider T, Dudler T, Gelb MH, Suter M (1994) Lysine residues in bee venom phospholipase A2 are important for binding to human monoclonal or polyclonal antibodies of the IgG4 isotope. Int Arch Allergy Immunol 104(3):262–269. https://doi.org/10.1159/000236675

    Article  CAS  PubMed  Google Scholar 

  110. Sokalingam S, Raghunathan G, Soundrarajan N, Lee SG (2012) A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS ONE 7(7):e40410. https://doi.org/10.1371/journal.pone.0040410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Warwicker J, Charonis S, Curtis RA (2014) Lysine and arginine content of proteins: computational analysis suggests a new tool for solubility design. Mol Pharm 11(1):294–303. https://doi.org/10.1021/mp4004749.G

    Article  CAS  PubMed  Google Scholar 

  112. Ordon MR, Canakci M, Li L, Zhuang J, Osborne B, Thayumanavan S (2015) Field guide to challenges and opportunities in antibody-drug conjugates for chemists. Bioconjug Chem 26(11):2198–215. https://doi.org/10.1021/acs.bioconjchem.5b00399

    Article  CAS  Google Scholar 

  113. Pham GH, Ou W, Bursulaya B, DiDonato M, Herath A, Jin Y, Hao X, Loren J, Spraggon G, Brock A, Uno T, Geierstanger BH, Cellitti SE (2018) Tuning a protein-labeling reaction to achieve highly site selective lysine conjugation. Chembiochem. 19(8):799–804. https://doi.org/10.1002/cbic.201700611

    Article  CAS  PubMed  Google Scholar 

  114. Forte N, Benni I, Karu K, Chudasama V, Baker JR (2019) Cysteine-to-lysine transfer antibody fragment conjugation. Chem Sci 10(47):10919–10924. https://doi.org/10.1039/c9sc03825f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P (2018) Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 10(11):1564. https://doi.org/10.3390/nu10111564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schemitt EG, Hartmann RM, Colares JR (2019) Protective action of glutamine in rats with severe acute liver failure. World J Hepatol 11(3):273–286. https://doi.org/10.4254/wjh.v11.i3.273

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jeong Y-H, Wang SS (1995) Role of glutamine in hybridoma cell culture: Effects on cell growth, antibody production, and cell metabolism. Enzyme Microb Technol 17(1):47–55. https://doi.org/10.1021/bp990068m

    Article  CAS  Google Scholar 

  118. Honegger A, Plückthun A (2001) The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains. J Mol Biol 309(3):687–699. https://doi.org/10.1006/jmbi.2001.4664

    Article  CAS  PubMed  Google Scholar 

  119. Robinson NE, Robinson ZW, Robinson BR, Robinson AL, Robinson JA, Robinson ML, Robinson AB (2004) Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. J Pept Res 63(5):426–436. https://doi.org/10.1111/j.1399-3011.2004.00151.x

    Article  CAS  PubMed  Google Scholar 

  120. Riggs DL, Silzel JW, Lyon YA, Kang AS, Julian RR (2019) Analysis of glutamine deamidation: Products, pathways, and kinetics. Anal Chem 91(20):13032–13038. https://doi.org/10.1021/acs.analchem.9b03127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xie NZ, Du QS, Li JX, Huang RB (2015) Exploring strong interactions in proteins with quantum chemistry and examples of their applications in drug design. PLoS ONE 10(9):e0137113. https://doi.org/10.1371/journal.pone.0137113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ajikumar A, Premkumar AKN, Narayanan SP (2023) The self-assembly of L-histidine might be the cause of histidinemia. Sci Rep 13(1):17461. https://doi.org/10.1038/s41598-023-44749-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brosnan ME, Brosnan JT (2020) Histidine metabolism and function. J Nutr 150(Suppl 1):2570S-2575S. https://doi.org/10.1093/jn/nxaa079

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mrozek A, Karolak-Wojciechowska J, Kieć-Kononowicz K (2003) Five-membered heterocycles. Part III. Aromaticity of 1,3-imidazole in 5 + n heterobicyclic molecules. J Mol Struct 655:397–403. https://doi.org/10.1016/S0022-2860(03)00282-5

    Article  CAS  Google Scholar 

  125. Booth WT, Schlachter CR, Pote S, Ussin N, Mank NJ, Klapper V, Offermann LR, Tang C, Hurlburt BK, Chruszcz M (2018) Impact of an N-terminal polyhistidine tag on protein thermal stability. ACS Omega 3(1):760–768. https://doi.org/10.1021/acsomega.7b01598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zenn HM, Hutschenreiter S, Herberg FW (2010) Anti-histidine antibodies as tools for reversible capturing of His-tagged fusion proteins for subsequent binding analysis. antibody engineering 667–681. https://doi.org/10.1007/978-3-642-01144-3_42

  127. Karow AR, Bahrenburg S, Garidel P (2013) Buffer capacity of biologics–from buffer salts to buffering by antibodies. Biotechnol Prog 29(2):480–492. https://doi.org/10.1002/btpr.1682

    Article  CAS  PubMed  Google Scholar 

  128. Saurabh S, Kalonia C, Li Z (2022) Understanding the stabilizing effect of histidine on mAb aggregation: A molecular dynamics study. Mol Pharm 19(9):3288–3303. https://doi.org/10.1021/acs.molpharmaceut.2c00453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen B, Bautista R, Yu K, Zapata GA, Mulkerrin MG, Chamow SM (2003) Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res 20(12):1952–1960. https://doi.org/10.1023/b:pham.0000008042.15988.c0

    Article  CAS  PubMed  Google Scholar 

  130. Tian F, Middaugh CR, Offerdahl T, Munson E, Sane S, Rytting JH (2007) Spectroscopic evaluation of the stabilization of humanized monoclonal antibodies in amino acid formulations. Int J Pharm 335(1–2):20–31. https://doi.org/10.1016/j.ijpharm.2006.10.037

    Article  CAS  PubMed  Google Scholar 

  131. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A 96(17):9459–9464. https://doi.org/10.1073/pnas.96.17.9459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu X, Tian X, Hao X (2022) A cross-reactive pH-dependent EGFR antibody with improved tumor selectivity and penetration obtained by structure-guided engineering. Mol Ther Oncolytics 27:256–269. https://doi.org/10.1016/j.omto.2022.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sulea T, Rohani N, Baardsnes J (2020) Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 12(1):1682866. https://doi.org/10.1080/19420862.2019.1682866

    Article  CAS  PubMed  Google Scholar 

  134. Zou W, Huang C, Sun Q (2022) A stepwise mutagenesis approach using histidine and acidic amino acid to engineer highly pH-dependent protein switches. 3 Biotech 12(1):21. https://doi.org/10.1007/s13205-021-03079-x

    Article  PubMed  Google Scholar 

  135. Combs JA, DeNicola GM (2019) The nonessential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel) 11(5):678. https://doi.org/10.3390/cancers11050678

    Article  CAS  PubMed  Google Scholar 

  136. Frangione B, Milstein C, Pink JR (1969) Structural studies of immunoglobulin G. Nature 221(5176):145–148. https://doi.org/10.1038/221145a0

    Article  CAS  PubMed  Google Scholar 

  137. Lefranc MP, Pommié C, Ruiz M (2003) IMGT unique numbering for immunoglobulin and T-cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27(1):55–77. https://doi.org/10.1016/s0145-305x(02)00039-3

    Article  CAS  PubMed  Google Scholar 

  138. Doronina SO, Toki BE, Torgov MY (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–784. https://doi.org/10.1038/nbt832

    Article  CAS  PubMed  Google Scholar 

  139. Chumsae C, Gaza-Bulseco G, Liu H (2009) Identification and localization of unpaired cysteine residues in monoclonal antibodies by fluorescence labeling and mass spectrometry. Anal Chem 81(15):6449–6457. https://doi.org/10.1021/ac900815z

    Article  CAS  PubMed  Google Scholar 

  140. Huh JH, White AJ, Brych SR, Franey H, Matsumura M (2013) The identification of free cysteine residues within antibodies and a potential role for free cysteine residues in covalent aggregation because of agitation stress. J Pharm Sci 102(6):1701–1711. https://doi.org/10.1002/jps.23505

    Article  CAS  PubMed  Google Scholar 

  141. Pepinsky RB, Silvian L, Berkowitz SA (2010) Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci 19(5):954–966. https://doi.org/10.1002/pro.372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hamblett KJ, Senter PD, Chace DF (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070. https://doi.org/10.1158/1078-0432.CCR-04-0789

    Article  CAS  PubMed  Google Scholar 

  143. McDonagh CF, Turcott E, Westendorf L (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19(7):299–307. https://doi.org/10.1093/protein/gzl013

    Article  CAS  PubMed  Google Scholar 

  144. Shen BQ, Xu K, Liu L (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189. https://doi.org/10.1038/nbt.2108

    Article  CAS  PubMed  Google Scholar 

  145. Junutula JR, Bhakta S, Raab H (2008) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods 332(1–2):41–52. https://doi.org/10.1016/j.jim.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  146. Livingstone CD, Barton GJ (1993) Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci 9(6):745–756. https://doi.org/10.1093/bioinformatics/9.6.745

    Article  CAS  PubMed  Google Scholar 

  147. Yokota A, Tsumoto K, Shiroishi M, Nakanishi T, Kondo H, Kumagai I (2010) Contribution of asparagine residues to the stabilization of a proteinaceous antigen-antibody complex, HyHEL-10-hen egg white lysozyme. J Biol Chem 285(10):7686–7696. https://doi.org/10.1074/jbc.M109.089623

    Article  CAS  PubMed  Google Scholar 

  148. Dobson CL, Devine PW, Phillips JJ (2016) Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep 6:38644. https://doi.org/10.1038/srep38644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Qiu H, Wei R, Jaworski J (2019) Engineering an anti-CD52 antibody for enhanced deamidation stability. MAbs 11(7):1266–1275. https://doi.org/10.1080/19420862.2019.1631117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kato K, Nakayoshi T, Kurimoto E, Oda A (2020) Mechanisms of deamidation of asparagine residues and effects of main-chain conformation on activation energy. Int J Mol Sci 21(19):7035. https://doi.org/10.3390/ijms21197035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V (2020) Physicochemical stability of monoclonal antibodies: A Review. J Pharm Sci 109(1):169–190. https://doi.org/10.1016/j.xphs.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  152. Krall AS, Mullen PJ, Surjono F (2021) Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab 33(5):1013-1026.e6. https://doi.org/10.1016/j.cmet.2021.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yi M, Sun J, Sun H (2023) Identification and characterization of an unexpected isomerization motif in CDRH2 that affects antibody activity. MAbs 15(1):2215364. https://doi.org/10.1080/19420862.2023.2215364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Harris RJ, Kabakoff B, Macchi FD (2001) Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl 752(2):233–245. https://doi.org/10.1016/s0378-4347(00)00548-x

    Article  CAS  PubMed  Google Scholar 

  155. Kobrin BJ, Buhl S, Shulman MJ, Scharff MD (1991) A V region mutation in a phosphocholine-binding monoclonal antibody results in loss of antigen binding. J Immunol 146(6):2017–2020

    Article  CAS  PubMed  Google Scholar 

  156. Cacia J, Keck R, Presta LG, Frenz J (1996) Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35(6):1897–1903. https://doi.org/10.1021/bi951526c

    Article  CAS  PubMed  Google Scholar 

  157. Zabetakis D, Shriver-Lake LC, Olson MA, Goldman ER, Anderson GP (2019) Experimental evaluation of single-domain antibodies predicted by molecular dynamics simulations to have elevated thermal stability. Protein Sci 28(10):1909–1912. https://doi.org/10.1002/pro.3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Patel CN, Bauer SP, Davies J (2016) N+1 Engineering of an aspartate isomerization hotspot in the complementarity-determining region of a monoclonal antibody. J Pharm Sci 105(2):512–518. https://doi.org/10.1016/S0022-3549(15)00185-9

    Article  CAS  PubMed  Google Scholar 

  159. Barik S (2020) The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int J Mol Sci 21(22):8776. https://doi.org/10.3390/ijms21228776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Alam MS, Rathore S, Tyagi RK, Sharma YD (2016) Host-parasite interaction: multiple sites in the Plasmodium vivax tryptophan-rich antigen PvTRAg38 interact with the erythrocyte receptor band 3. FEBS Lett 590(2):232–241. https://doi.org/10.1002/1873-3468.12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen G, Dubrawsky I, Mendez P, Georgiou G, Iverson BL (1999) In vitro scanning saturation mutagenesis of all the specificity determining residues in an antibody binding site. Protein Eng 12(4):349–356. https://doi.org/10.1093/protein/12.4.349

    Article  CAS  PubMed  Google Scholar 

  162. Palego L, Betti L, Rossi A, Giannaccini G (2016) Tryptophan Biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids 8952520. https://doi.org/10.1155/2016/8952520

  163. Qu L, Qiao X, Qi F, Nishida N, Hoshino T (2021) Analysis of binding modes of antigen-antibody complexes by molecular mechanics calculation. J Chem Inf Model 61(5):2396–2406. https://doi.org/10.1021/acs.jcim.1c00167

    Article  CAS  PubMed  Google Scholar 

  164. Samanta U, Chakrabarti P (2001) Assessing the role of tryptophan residues in the binding site. Protein Eng 14(1):7–15. https://doi.org/10.1093/protein/14.1.7

    Article  CAS  PubMed  Google Scholar 

  165. Hageman T, Wei H, Kuehne P (2018) Impact of Tryptophan oxidation in complementarity-determining regions of two monoclonal antibodies on structure-function characterized by hydrogen-deuterium exchange mass spectrometry and surface plasmon resonance. Pharm Res 36(1):24. https://doi.org/10.1007/s11095-018-2545-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jacobitz AW, Liu Q, Suravajjala S, Agrawal NJ (2021) Tryptophan oxidation of a monoclonal antibody under diverse oxidative stress conditions: Distinct oxidative pathways favor specific tryptophan residues. J Pharm Sci 110(2):719–726. https://doi.org/10.1016/j.xphs.2020.10.039

    Article  CAS  PubMed  Google Scholar 

  167. Kobayashi H, Kato J, Morioka H, Stewart JD, Ohtsuka E (1999) Tryptophan H33 plays an important role in pyrimidine (6–4) pyrimidone photoproduct binding by a high-affinity antibody. Protein Eng 12(10):879–884. https://doi.org/10.1093/protein/12.10.879

    Article  CAS  PubMed  Google Scholar 

  168. Allen D, Cumano A, Simon T, Sablitzky F, Rajewsky K (1988) Modulation of antibody binding affinity by somatic mutation. Int J Cancer Suppl 3:1–8. https://doi.org/10.1002/ijc.2910410802

    Article  CAS  PubMed  Google Scholar 

  169. Liu D, Ren D, Huang H (2008) Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry 47(18):5088–5100. https://doi.org/10.1021/bi702238b

    Article  CAS  PubMed  Google Scholar 

  170. Hermeling S, Crommelin DJA, Schellekens H (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903. https://doi.org/10.1023/B:PHAM.0000029275.41323.a6

    Article  CAS  PubMed  Google Scholar 

  171. Gaza-Bulseco G, Faldu S, Hurkmans K, Chumsae C, Liu H (2008) Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J Chromatogr B Analyt Technol Biomed Life Sci 870(1):55–62. https://doi.org/10.1016/j.jchromb.2008.05.045

    Article  CAS  PubMed  Google Scholar 

  172. Sankar K, Hoi KH, Yin Y (2018) Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs 10(8):1281–1290. https://doi.org/10.1080/19420862.2018.1518887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tavella D, Ouellette DR, Garofalo R (2022) A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model. PLoS ONE 17(12):e0279689. https://doi.org/10.1371/journal.pone.0279689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Khetan A, Huang YM, Dolnikova J (2010) Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnol Bioeng 107(1):116–123. https://doi.org/10.1002/bit.22771

    Article  CAS  PubMed  Google Scholar 

  175. Ren D, Zhang J, Pritchett R (2011) Detection and identification of a serine to arginine sequence variant in a therapeutic monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 879(27):2877–2884. https://doi.org/10.1016/j.jchromb.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  176. Kominami, Katsuya, Okui, Akira, Mitsui, Shinichi, Yamaguchi, Nozomi (2000) Serine protease-specific monoclonal antibody and utilization thereof. Fuso Pharmaceutical Industries, ltd. WO/2000/001807. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2000001807

  177. Reis PBPS, Barletta GP, Gagliardi L, Fortuna S, Soler MA, Rocchia W (2022) Antibody-Antigen binding interface analysis in the big data era. Front Mol Biosci 9:945808. https://doi.org/10.3389/fmolb.2022.945808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Milne PJ, Kilian G (2010) The properties, formation, and biological Activity of 2,5-Diketopiperazines. Chemistry, Medicine 657–698. https://doi.org/10.1016/B978-008045382-8.00716-4

  179. Gu C, Mao X, Chen D, Yu B, Yang Q (2019) Isoleucine plays an important role for maintaining immune function. Curr Protein Pept Sci 20(7):644–651. https://doi.org/10.2174/1389203720666190305163135

    Article  CAS  PubMed  Google Scholar 

  180. Mao X, Sun R, Wang Q (2022) l-Isoleucine administration alleviates DSS-Induced colitis by regulating TLR4/MyD88/NF-κB pathway in rats. Front Immunol 12:817583. https://doi.org/10.3389/fimmu.2021.817583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tsutsui K, Koide N, Tomoda J, Hayashi H, Hatase O, Oda T (1977) Role of hydrophobic interaction in hapten-antibody binding. Acta Med Okayama 31(5):289–294

    CAS  PubMed  Google Scholar 

  182. Christopher DT, Leslie M, Gang YKP, Ramesh B, Sunil B, Sonia P, Chris M, Alex S, Avinash G (2013) Antibodies comprising site-specific non-natural amino acid residues, methods of their preparation and methods of their use. WO2013185115A1. https://patents.google.com/patent/WO2013185115A1/en

  183. González-Muñoz A, Bokma E, O’Shea D (2012) Tailored amino acid diversity for the evolution of antibody affinity. MAbs 4(6):664–672. https://doi.org/10.4161/mabs.21728

    Article  PubMed  PubMed Central  Google Scholar 

  184. Xiang J, Chen Z, Delbaere LT, Liu E (1993) Differences in antigen-binding affinity caused by a single amino acid substitution in the variable region of the heavy chain. Immunol Cell Biol 71(Pt 4):239–247. https://doi.org/10.1038/icb.1993.28

    Article  CAS  PubMed  Google Scholar 

  185. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4:302. https://doi.org/10.3389/fimmu.2013.00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kuhlman G, Roth JA, Flakoll PJ, Vandehaar MJ, Nissen S (1988) Effects of dietary leucine, alpha-ketoisocaproate and isovalerate on antibody production and lymphocyte blastogenesis in growing lambs. J Nutr 118(12):1564–1569. https://doi.org/10.1093/jn/118.12.1564

    Article  CAS  PubMed  Google Scholar 

  187. Ananieva EA, Powell JD, Hutson SM (2016) Leucine metabolism in T-Cell activation: mTOR signaling and beyond. Adv Nutr 7(4):798S-805S. https://doi.org/10.3945/an.115.011221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dickson KA, Haigis MC, Raines RT (2005) Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 80:349–374. https://doi.org/10.1016/S0079-6603(05)80009-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. David A. Tirrell, Yi T (2009) Method for stabilization of proteins using non-natural amino acids. US20090221790A1. https://patents.google.com/patent/US20090221790A1/en?oq=US20090221790A1

  190. Kostelny SA, Cole MS, Tso JY (1992) Formation of a bispecific antibody by the use of leucine zippers. J Immunol 148(5):1547–1553

    Article  CAS  PubMed  Google Scholar 

  191. Park DW, Kim ED, Kim SH, Han JY, Kim J (2011) The development of dimerized chicken recombinant single-chain Fv (ScFv) antibody using leucine zipper motif. Korean J Microbiol 47(4):328–334

    Google Scholar 

  192. Al Mughram MH, Catalano C, Herrington NB, Safo MK, Kellogg GE (2023) 3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins. Front Mol Biosci 10:1116868. https://doi.org/10.3389/fmolb.2023.1116868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lee G-Y (2014) DFT Study of the effects of halogen anions on the stability of alanine zwitterion. Bull Korean Chem Soc 35(4):1202–1204. https://doi.org/10.5012/bkcs.2014.35.4.1202

    Article  CAS  Google Scholar 

  194. Burkovitz A, Sela-Culang I, Ofran Y (2014) Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity. FEBS J 281(1):306–319. https://doi.org/10.1111/febs.12597

    Article  CAS  PubMed  Google Scholar 

  195. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244(4908):1081–1085. https://doi.org/10.1126/science.2471267

    Article  CAS  PubMed  Google Scholar 

  196. Gao M, Zhang F, Zhu Y (2018) Alanine scanning mutagenesis of SP70 epitope in characterizing species-specific antibodies induced by enterovirus 71-based antigens. Mol Med Rep 17(1):1006–1014. https://doi.org/10.3892/mmr.2017.7992

    Article  CAS  PubMed  Google Scholar 

  197. Ma H, Ó’Fágáin C, O’Kennedy R (2019) Unraveling enhancement of antibody fragment stability - Role of format structure and cysteine modification. J Immunol Methods 464:57–63. https://doi.org/10.1016/j.jim.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  198. Yamashita T, Mizohata E, Nagatoishi S (2019) Affinity improvement of cancer-targeted antibody through alanine-induced adjustment of antigen-antibody interface. Structure 27(3):519-527.e5. https://doi.org/10.1016/j.str.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  199. Wang C, Peng Y, Zhang Y (2023) The biological functions and metabolic pathways of valine in swine. J Anim Sci Biotechnol 14(1):135. https://doi.org/10.1186/s40104-023-00927-

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Foroudi F, Rezamand P (2014) The effects of dietary valine on performance, serum antibody titer and bone mineralization in broiler chicks. Iran J Appl Anim Sci 4(2):405–409

    Google Scholar 

  201. Wang Y, Fan S, Zhong W, Zhou X, Li S (2017) Development and properties of valine-alanine based antibody-drug conjugates with monomethyl auristatin E as the potent payload. Int J Mol Sci 18(9):1860. https://doi.org/10.3390/ijms18091860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Anami Y, Yamazaki CM, Xiong W (2018) Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat Commun 9(1):2512. https://doi.org/10.1038/s41467-018-04982-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Olsztynska S, Dupuy N, Vrielynck L, Komorowska M (2006) Water evaporation analysis of L-phenylalanine from initial aqueous solutions to powder state by vibrational spectroscopy. Appl Spectrosc 60(9):1040–1053. https://doi.org/10.1366/000370206778397425

    Article  CAS  PubMed  Google Scholar 

  204. Lecerf M, Kanyavuz A, Rossini S, Dimitrov JD (2021) Interaction of clinical-stage antibodies with heme predicts their physiochemical and binding qualities. Commun Biol 4(1):391. https://doi.org/10.1038/s42003-021-01931-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Myung Y, Pires DEV, Ascher DB (2023) Understanding the complementarity and plasticity of antibody-antigen interfaces. Bioinformatics 39(7):btad392. https://doi.org/10.1093/bioinformatics/btad392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Smith SC, McAdam WJ, Kemp BE, Morgan FJ, Cotton RG (1987) A monoclonal antibody to the phosphorylated form of phenylalanine hydroxylase Definition of the phosphopeptide epitope. Biochem J 244(3):625–631. https://doi.org/10.1042/bj2440625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. National Research Council (US) subcommittee on the tenth edition of the recommended dietary allowances. Recommended dietary allowances: 10th edition. Washington (DC): National Academies Press (US); 1989. 6, Protein and Amino Acids. https://www.ncbi.nlm.nih.gov/books/NBK234922/. Accessed 6 Feb 2024

  208. Liu H, May K (2012) Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs 4(1):17–23. https://doi.org/10.4161/mabs.4.1.18347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Alberts B, Johnson A, Lewis J (2002) New York: Garland Science;. Analyzing protein structure and function. Molecular Biology of the Cell. 4th edition. https://www.ncbi.nlm.nih.gov/books/NBK26820/

  210. Van Dijk E, Hoogeveen A, Abeln S (2015) The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLoS Comput Biol 11(5):e1004277. https://doi.org/10.1371/journal.pcbi.1004277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Uversky VN (2013) The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. Intrinsically Disord Proteins 1(1):e24684. https://doi.org/10.4161/idp.24684

  212. Valliere-Douglass JF, Eakin CM, Wallace A (2010) Glutamine-linked and nonconsensus asparagine-linked oligosaccharides present in human recombinant antibodies define novel protein glycosylation motifs. J Biol Chem 285(21):16012–16022. https://doi.org/10.1074/jbc.M109.096412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chang WI, Olson JS, Matthews KS (1993) Lysine 84 is at the subunit interface of lac repressor protein. J Biol Chem 268(23):17613–17622

    Article  CAS  PubMed  Google Scholar 

  214. Choi EJ, Mayo SL (2006) Generation and analysis of proline mutants in protein G. Protein Eng Des Sel 19(6):285–289. https://doi.org/10.1093/protein/gzl007

    Article  CAS  PubMed  Google Scholar 

  215. Li Y, Liu J, Chen W (2023) A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 16(1):2. https://doi.org/10.1186/s13045-023-01399-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ha SYY, Anami Y, Yamazaki CM (2022) An Enzymatically Cleavable Tripeptide Linker for Maximizing the Therapeutic Index of Antibody-Drug Conjugates. Mol Cancer Ther 21(9):1449–1461. https://doi.org/10.1158/1535-7163.MCT-22-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Reverberi R, Reverberi L (2007) Factors affecting the antigen-antibody reaction. Blood Transfus 5(4):227–240. https://doi.org/10.2450/2007.0047-07

    Article  PubMed  PubMed Central  Google Scholar 

  218. Rottenaicher GJ, Absmeier RM, Meier L, Zacharias M, Buchner J. A (2023) constant domain mutation in a patient-derived antibody light chain reveals principles of ALamyloidosis. Commun Biol 6(1):209. Published 2023 Feb 23. https://doi.org/10.1038/s42003-023-04574-y

  219. Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. https://doi.org/10.1002/0470867302.ch14

  220. O’Connor CM, Adams JU (2010) Essentials of Cell Biology. NPG Education, Cambridge, MA

    Google Scholar 

  221. Janeway CA Jr, Travers P, Walport M (2001) The interaction of the antibody molecule with specific antigen. Immunobiology: The immune system in health and disease. 5th edition. New York: Garland Science. https://www.ncbi.nlm.nih.gov/books/NBK27160/

Download references

Acknowledgements

All the authors would like to express their gratitude and appreciation to Innoplexus Consulting Pvt. Ltd. We are grateful for providing continuous encouragement and support for this publication. We would like to extend our sincere thanks to Shailendra Kavathekar for his contributions in reproducing high-quality images for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design—JP.

Data collection—AG, PD, AKN, RP, RP (Pais).

Analysis and interpretation of the data—AG, AKN, RP, RP (Pais), JP.

Figure preparation—AG, AKN, RP, RP (Pais), JP.

Manuscript drafting—AG, PD, AKN, RP, RP (Pais), JS, WS, JP.

Critical revision of the work—AKN, JS, WS, JP.

Corresponding author

Correspondence to Jaspal Patil.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavade, A., Nagraj, A.K., Patel, R. et al. Understanding the Specific Implications of Amino Acids in the Antibody Development. Protein J (2024). https://doi.org/10.1007/s10930-024-10201-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10201-4

Keywords

Navigation