Skip to main content

Advertisement

Log in

An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Raetz CRH (1986) Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet 20:253–291. https://doi.org/10.1146/annurev.ge.20.120186.001345

    Article  CAS  PubMed  Google Scholar 

  2. Jackson CJ, Carr PD, Liu JW et al (2007) The structure and function of a novel glycerophosphodiesterase from enterobacter aerogenes. J Mol Biol 367:1047–1062. https://doi.org/10.1016/j.jmb.2007.01.032

    Article  CAS  PubMed  Google Scholar 

  3. Brzoska P, Boos W (1988) Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the ugp transport system of Escherichia coli. J Bacteriol 170:4125–4135. https://doi.org/10.1128/jb.170.9.4125-4135.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Larson TJ, Ehrmann M, Boos W (1983) Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem 258:5428–5432

    Article  CAS  PubMed  Google Scholar 

  5. Fan X, Goldfine H, Lysenko E, Weiser JN (2008) The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Mol Microbiol 41:1029–1036. https://doi.org/10.1046/j.1365-2958.2001.02571.x

    Article  Google Scholar 

  6. Schmidl SR, Otto A, Lluch-Senar M et al (2011) A trigger enzyme in mycoplasma pneumoniae: Impact of the glycerophosphodiesterase glpq on virulence and gene expression. PLoS Pathog 7:e1002263. https://doi.org/10.1371/journal.ppat.1002263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van der Rest B, Boisson AM, Gout E et al (2002) Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol 130:244–255. https://doi.org/10.1104/pp.003392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mehra P, Pandey BK, Verma L, Giri J (2019) A novel glycerophosphodiester phosphodiesterase improves phosphate deficiency tolerance in rice. Plant Cell Environ 42:1167–1179. https://doi.org/10.1111/pce.13459

    Article  CAS  PubMed  Google Scholar 

  9. Yanaka N (2007) Mammalian Glycerophosphodiester Phosphodiesterases. Biosci Biotechnol Biochem 71:1811–1818. https://doi.org/10.1271/bbb.70062

    Article  CAS  PubMed  Google Scholar 

  10. Gallazzini M, Ferraris JD, Burg MB (2008) GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC. Proc Natl Acad Sci U S A 105:11026–11031. https://doi.org/10.1073/pnas.0805496105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Simon GM, Cravatt BF (2008) Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem 283:9341–9349. https://doi.org/10.1074/jbc.M707807200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Okazaki Y, Ohshima N, Yoshizawa I et al (2010) A novel glycerophosphodiester phosphodiesterase, GDE5, controls skeletal muscle development via a non-enzymatic mechanism. J Biol Chem 285:27652–27663. https://doi.org/10.1074/jbc.M110.106708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao M, Sockanathan S (2005) Developmental biology: Transmembrane protein GDE2 induces motor neuron differentiation in vivo. Science (80- ) 309:2212–2215. https://doi.org/10.1126/science.1117156

  14. Corda D, Kudo T, Zizza P et al (2009) The developmentally regulated osteoblast phosphodiesterase GDE3 is glycerophosphoinositol-specific and modulates cell growth. J Biol Chem 284:24848–24856. https://doi.org/10.1074/jbc.M109.035444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. https://doi.org/10.1038/nrm2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stillwell W, Stillwell W (2016) Chapter 4: membrane lipids: fatty acids. An Introd to Biol Membr 49–62. https://doi.org/10.1016/B978-0-444-63772-7.00004-X

  17. Farn JL, Strugnell RA, Hoyne PA et al (2001) Molecular characterization of a secreted enzyme with phospholipase B activity from Moraxella bovis. J Bacteriol 183:6717–6720. https://doi.org/10.1128/JB.183.22.6717-6720.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sitkiewicz I, Stockbauer KE, Musser JM (2007) Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 15:63–69. https://doi.org/10.1016/j.tim.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  19. Matos AR, Pham-Thi A-T (2009) Lipid deacylating enzymes in plants: old activities, new genes. Plant Physiol Biochem 47:491–503. https://doi.org/10.1016/j.plaphy.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  20. Shi L, Liu JF, An XM, Liang DC (2008) Crystal structure of Glycerophosphodiester Phosphodiesterase (GDPD) from thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism. Proteins Struct Funct Genet 72:280–288. https://doi.org/10.1002/prot.21921

    Article  CAS  PubMed  Google Scholar 

  21. Lemieux MJ, Huang Y, Wang DN (2004) Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res Microbiol 155:623–629. https://doi.org/10.1016/j.resmic.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  22. Ohshima N, Yamashita S, Takahashi N et al (2008) Escherichia coli Cytosolic Glycerophosphodiester Phosphodiesterase (UgpQ) Requires Mg2+, Co2+, or Mn2+ for its enzyme activity. J Bacteriol 190:1219–1223. https://doi.org/10.1128/JB.01223-07

    Article  CAS  PubMed  Google Scholar 

  23. Corda D, Mosca MG, Ohshima N et al (2014) The emerging physiological roles of the glycerophosphodiesterase family. FEBS J 281:998–1016. https://doi.org/10.1111/febs.12699

    Article  CAS  PubMed  Google Scholar 

  24. Ahrén IL, Janson H, Forsgren A, Riesbeck K (2001) Protein D expression promotes the adherence and internalization of non-typeable Haemophilus influenzae into human monocytic cells. Microb Pathog 31:151–158. https://doi.org/10.1006/mpat.2001.0456

    Article  CAS  PubMed  Google Scholar 

  25. Wang F, Lai L, Liu Y et al (2016) Expression and characterization of a novel glycerophosphodiester phosphodiesterase from Pyrococcus furiosus DSM 3638 that possesses lysophospholipase D activity. Int J Mol Sci 17:831. https://doi.org/10.3390/ijms17060831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McLoughlin SY, Jackson C, Liu JW, Ollis DL (2004) Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol 70:404–412. https://doi.org/10.1128/AEM.70.1.404-412.2004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghanem E, Li Y, Xu C, Raushel FM (2007) Characterization of a phosphodiesterase capable of hydrolyzing EA 2192, the most toxic degradation product of the nerve agent VX. Biochemistry 46:9032–9040. https://doi.org/10.1021/bi700561k

    Article  CAS  PubMed  Google Scholar 

  28. Fisher E, Almaguer C, Holic R et al (2005) Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae. J Biol Chem 280:36110–36117. https://doi.org/10.1074/jbc.M507051200

    Article  CAS  PubMed  Google Scholar 

  29. Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321. https://doi.org/10.1091/mbc.11.12.4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Šimočková M, Holič R, Tahotná D et al (2008) Yeast Pgc1p (YPL206c) controls the amount of phosphatidylglycerol via a phospholipase C-type degradation mechanism. J Biol Chem 283:17107–17115. https://doi.org/10.1074/jbc.M800868200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Pan W, Nikiforov A et al (2020) Identification of two glycerophosphodiester phosphodiesterase genes in maize leaf phosphorus remobilization. Crop J. https://doi.org/10.1016/j.cj.2020.05.004

    Article  Google Scholar 

  32. Geiger O, López-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta - Mol Cell Biol Lipids 1831:503–513. https://doi.org/10.1016/j.bbalip.2012.08.009

  33. Rw R, Surabhi N, Helmut B et al (2014) Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N, N, N-trimethylhomoserine. Eukaryot Cell 13:749–757. https://doi.org/10.1128/ec.00004-14

    Article  Google Scholar 

  34. Sebastián M, Smith AF, González JM et al (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME J 10:968–978. https://doi.org/10.1038/ismej.2015.172

    Article  CAS  PubMed  Google Scholar 

  35. Senik S V, Maloshenok LG, Kotlova ER, et al (2015) Diacylglyceryltrimethylhomoserine content and gene expression changes triggered by phosphate deprivation in the mycelium of the basidiomycete Flammulina velutipes. Phytochemistry 117:34–42. https://doi.org/10.1016/j.phytochem.2015.05.021

  36. Dias-Lopes C, Neshich IAP, Neshich G et al (2013) Identification of new sphingomyelinases D in pathogenic fungi and other pathogenic organisms. PLoS One 8:e79240. https://doi.org/10.1371/journal.pone.0079240

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. BA C, Tao S, JM E, et al (2011) Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease . Eukaryot Cell 10:1618–1627.https://doi.org/10.1128/ec.05160-11

  38. Bishop AC, Ganguly S, Solis NV et al (2013) Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence. J Biol Chem 288:33939–33952. https://doi.org/10.1074/jbc.M113.505735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Denloye T, Dalal S, Klemba M (2012) Characterization of a glycerophosphodiesterase with an unusual tripartite distribution and an important role in the asexual blood stages of Plasmodium falciparum. Mol Biochem Parasitol 186:29–37. https://doi.org/10.1016/j.molbiopara.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  40. Cheng L, Bucciarelli B, Liu J et al (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148. https://doi.org/10.1104/pp.111.173724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehra P, Giri J (2016) Rice and chickpea GDPDs are preferentially influenced by low phosphate and CaGDPD1 encodes an active glycerophosphodiester phosphodiesterase enzyme. Plant Cell Rep 35:1699–1717. https://doi.org/10.1007/s00299-016-1984-0

    Article  CAS  PubMed  Google Scholar 

  42. Van Der Rest B, Rolland N, Boisson AM et al (2004) Identification and characterization of plant glycerophosphodiester phosphodiesterase. Biochem J 379:601–607. https://doi.org/10.1042/BJ20031489

    Article  PubMed  Google Scholar 

  43. Cheng Y, Zhou W, El Sheery NI et al (2011) Characterization of the Arabidopsis Glycerophosphodiester Phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. Plant J 66:781–795. https://doi.org/10.1111/j.1365-313X.2011.04538.x

    Article  CAS  PubMed  Google Scholar 

  44. Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. Arab B 1:e0024. https://doi.org/10.1199/tab.0024

    Article  Google Scholar 

  45. López-Bucio J, Cruz-Ramı́rez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287.https://doi.org/10.1016/S1369-5266(03)00035-9

  46. Miura K, Rus A, Sharkhuu A et al (2005) The arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102:7760–7765. https://doi.org/10.1073/pnas.0500778102

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Doerner P (2008) Phosphate starvation signaling: a threesome controls systemic Pi homeostasis. Curr Opin Plant Biol 11:536–540. https://doi.org/10.1016/j.pbi.2008.05.006

    Article  CAS  PubMed  Google Scholar 

  48. Gao W, Lu L, Qiu W et al (2017) OsPAP26 encodes a major purple acid phosphatase and regulates phosphate remobilization in rice. Plant Cell Physiol 58:885–892. https://doi.org/10.1093/pcp/pcx041

    Article  CAS  PubMed  Google Scholar 

  49. Takami T, Ohnishi N, Kurita Y et al (2018) Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. Nat Plants 4:1044–1055. https://doi.org/10.1038/s41477-018-0291-x

    Article  CAS  PubMed  Google Scholar 

  50. Liang L, Lai Z, Ma W et al (2002) AhSL28, a senescence- and phosphate starvation-induced S-like RNase gene in Antirrhinum. Biochim Biophys Acta - Gene Struct Expr 1579:64–71. https://doi.org/10.1016/S0167-4781(02)00507-9

    Article  CAS  Google Scholar 

  51. Gaude N, Nakamura Y, Scheible WR et al (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56:28–39. https://doi.org/10.1111/j.1365-313X.2008.03582.x

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura Y, Koizumi R, Shui G et al (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci U S A 106:20978–20983. https://doi.org/10.1073/pnas.0907173106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Li M, Qin C, Welti R, Wang X (2006) Double knockouts of phospholipases Dζ1 and Dζ2 in arabidopsis affect root elongation dining phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770. https://doi.org/10.1104/pp.105.070995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakamura Y, Awai K, Masuda T et al (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476. https://doi.org/10.1074/jbc.M408799200

    Article  CAS  PubMed  Google Scholar 

  55. Ngo AH, Nakamura Y (2022) Phosphate starvation-inducible glycerophosphodiester phosphodiesterase6 is involved in Arabidopsis root growth. J Exp Bot 73:2995–3003. https://doi.org/10.1093/jxb/erac064

    Article  CAS  PubMed  Google Scholar 

  56. Ohshima N, Kudo T, Yamashita Y et al (2015) New members of the mammalian glycerophosphodiester phosphodiesterase family: GDE4 and GDE7 produce lysophosphatidic acid by lysophospholipase D activity. J Biol Chem 290:4260–4271. https://doi.org/10.1074/jbc.M114.614537

    Article  CAS  PubMed  Google Scholar 

  57. Zheng B, Berrie CP, Corda D, Farquhar MG (2003) GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc Natl Acad Sci U S A 100:1745–1750. https://doi.org/10.1073/pnas.0337605100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng B, Chen D, Farquhar MG (2000) MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16. Proc Natl Acad Sci U S A 97:3999–4004. https://doi.org/10.1073/pnas.97.8.3999

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen Q, Lu C, Yang H et al (2020) Glycerophosphodiester phosphodiesterase 1 (GDE1) acts as a potential tumor suppressor and is a novel therapeutic target for non-mucin-producing colon adenocarcinoma. PeerJ 2020:e8421. https://doi.org/10.7717/peerj.8421

    Article  Google Scholar 

  60. Guo Y, Uyama T, Khaledur Rahman SM et al (2021) Involvement of the γ isoform of cpla2 in the biosynthesis of bioactive n-acylethanolamines. Molecules 26:5213. https://doi.org/10.3390/molecules26175213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu J, Li Y, Li YA et al (2022) In vivo detection of dysregulated choline metabolism in paclitaxel-resistant ovarian cancers with proton magnetic resonance spectroscopy. J Transl Med 20:92. https://doi.org/10.1186/s12967-022-03292-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park S, Lee C, Sabharwal P et al (2013) GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science (80- ) 339:324–328. https://doi.org/10.1126/science.1231921

  63. Rodriguez M, Choi J, Park S, Sockanathan S (2012) Gde2 regulates cortical neuronal identity by controlling the timing of cortical progenitor differentiation. Development 139:3870–3879. https://doi.org/10.1242/dev.081083

    Article  CAS  PubMed  Google Scholar 

  64. Matas-Rico E, van Veen M, Leyton-Puig D et al (2016) Glycerophosphodiesterase GDE2 promotes neuroblastoma differentiation through glypican release and is a marker of clinical outcome. Cancer Cell 30:548–562. https://doi.org/10.1016/j.ccell.2016.08.016

    Article  CAS  PubMed  Google Scholar 

  65. Cave C, Park S, Rodriguez M et al (2017) GDE2 is essential for neuronal survival in the postnatal mammalian spinal cord. Mol Neurodegener 12:1–20. https://doi.org/10.1186/s13024-017-0148-1

    Article  CAS  Google Scholar 

  66. Choi BR, Cave C, Na CH, Sockanathan S (2020) GDE2-dependent activation of canonical Wnt signaling in neurons regulates oligodendrocyte maturation. Cell Rep 31:107540. https://doi.org/10.1016/j.celrep.2020.107540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi B-R, Dobrowolski M, Sockanathan S (2021) GDE2 expression in oligodendroglia regulates the pace of oligodendrocyte maturation. Dev Dyn An Off Publ Am Assoc Anat 250:513–526. https://doi.org/10.1002/dvdy.265

    Article  CAS  Google Scholar 

  68. Topanurak S, Ferraris JD, Li J et al (2013) High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase. Proc Natl Acad Sci U S A 110:7482–7487. https://doi.org/10.1073/pnas.1305220110

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  69. Cao MD, Döpkens M, Krishnamachary B et al (2012) Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR Biomed 25:1033–1042. https://doi.org/10.1002/nbm.2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakamura M, Li Y, Choi BR et al (2021) GDE2-RECK controls ADAM10 α-secretase-mediated cleavage of amyloid precursor protein. Sci Transl Med 13:eabe6178. https://doi.org/10.1126/scitranslmed.abe6178

  71. Salgado-Polo F, Van Veen M, Van Den Broek B et al (2020) Sequence-dependent trafficking and activity of GDE2, a GPI-specific phospholipase promoting neuronal differentiation. J Cell Sci 133:jcs235044. https://doi.org/10.1242/jcs.235044

  72. Westerhaus A, Joseph T, Meyers AJ et al (2022) The distribution and function of GDE2, a regulator of spinal motor neuron survival, are disrupted in Amyotrophic Lateral Sclerosis. Acta Neuropathol Commun 10:73. https://doi.org/10.1186/s40478-022-01376-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang X, Dai X, Zhao X et al (2022) MiR-874-3p represses the migration and invasion yet promotes the apoptosis and cisplatin sensitivity via being sponged by long intergenic non-coding RNA 00922 (LINC00922) and targeting Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) i. Bioengineered 13:7082–7104. https://doi.org/10.1080/21655979.2022.2045831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y, Chen H, Wei X (2021) Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur J Clin Invest 51:e13541. https://doi.org/10.1111/eci.13541

    Article  CAS  PubMed  Google Scholar 

  75. Yanaka N, Imai Y, Kawai E et al (2003) Novel membrane protein containing glycerophosphodiester phosphodiesterase motif is transiently expressed during osteoblast differentiation. J Biol Chem 278:43595–43602. https://doi.org/10.1074/jbc.M302867200

    Article  CAS  PubMed  Google Scholar 

  76. Tsutsumi T, Matsuda R, Morito K et al (2020) Identification of human glycerophosphodiesterase 3 as an ecto phospholipase C that converts the G protein-coupled receptor 55 agonist lysophosphatidylinositol to bioactive monoacylglycerols in cultured mammalian cells. Biochim Biophys Acta - Mol Cell Biol Lipids 1865:158761. https://doi.org/10.1016/j.bbalip.2020.158761

    Article  CAS  PubMed  Google Scholar 

  77. Briand-Mésange F, Pons V, Allart S et al (2020) Glycerophosphodiesterase 3 (GDE3) is a lysophosphatidylinositol-specific ectophospholipase C acting as an endocannabinoid signaling switch. J Biol Chem 295:15767–15781. https://doi.org/10.1074/jbc.RA120.015278

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dobrowolski M, Cave C, Levy-Myers R et al (2020) GDE3 regulates oligodendrocyte precursor proliferation via release of soluble CNTFRα. Development 147:dev180695. https://doi.org/10.1242/dev.180695

  79. Key C-CC, Bishop AC, Wang X et al (2020) Human GDPD3 overexpression promotes liver steatosis by increasing lysophosphatidic acid production and fatty acid uptake. J Lipid Res 61:jlr.RA120000760. https://doi.org/10.1194/jlr.ra120000760

  80. Beaulac HJ, Gilels F, Zhang J et al (2021) Primed to die: an investigation of the genetic mechanisms underlying noise-induced hearing loss and cochlear damage in homozygous Foxo3-knockout mice. Cell Death Dis 12:682. https://doi.org/10.1038/s41419-021-03972-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Naka K, Ochiai R, Matsubara E et al (2020) The lysophospholipase D enzyme Gdpd3 is required to maintain chronic myelogenous leukaemia stem cells. Nat Commun 11:4681. https://doi.org/10.1038/s41467-020-18491-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu M, Gu S, Xu J et al (2005) A novel splice variant of human gene NPL, mainly expressed in human liver, kidney and peripheral blood leukocyte. DNA Seq 16:137–142. https://doi.org/10.1080/10425170400020373

    Article  CAS  PubMed  Google Scholar 

  83. Chang PA, Shao HB, Long DX et al (2008) Isolation, characterization and molecular 3D model of human GDE4, a novel membrane protein containing glycerophosphodiester phosphodiesterase domain. Mol Membr Biol 25:557–566. https://doi.org/10.1080/09687680802537605

    Article  CAS  PubMed  Google Scholar 

  84. de Bruijn SE, Fiorentino A, Ottaviani D et al (2020) Structural variants create new topological-associated domains and ectopic retinal enhancer-gene contact in dominant retinitis pigmentosa. Am J Hum Genet 107:802–814. https://doi.org/10.1016/j.ajhg.2020.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qi X, Yan Q, Shang Y et al (2022) A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ 29:2233–2246. https://doi.org/10.1038/s41418-022-01011-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsuboi K, Okamoto Y, Rahman IAS et al (2015) Glycerophosphodiesterase GDE4 as a novel lysophospholipase D: a possible involvement in bioactive N-acylethanolamine biosynthesis. Biochim Biophys Acta - Mol Cell Biol Lipids 1851:537–548. https://doi.org/10.1016/j.bbalip.2015.01.002

    Article  CAS  Google Scholar 

  87. McIntyre TM, Pontsler AV, Silva AR et al (2003) Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist. Proc Natl Acad Sci U S A 100:131–136. https://doi.org/10.1073/pnas.0135855100

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Schwan TG, Schrumpf ME, Hinnebusch BJ et al (1996) GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34:2483–2492. https://doi.org/10.1128/jcm.34.10.2483-2492.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schwan TG, Battisti JM, Porcella SF et al (2003) Glycerol-3-phosphate acquisition in spirochetes: distribution and biological activity of Glycerophosphodiester Phosphodiesterase (GlpQ) among Borrelia species. J Bacteriol 185:1346–1356. https://doi.org/10.1128/JB.185.4.1346-1356.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Telford SR 3rd, Goethert HK, Molloy PJ et al (2015) Borrelia miyamotoi disease: neither lyme disease nor relapsing fever. Clin Lab Med 35:867–882. https://doi.org/10.1016/j.cll.2015.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  91. Molloy PJ, Telford SR 3rd, Chowdri HR et al (2015) Borrelia miyamotoi disease in the Northeastern United States: a case series. Ann Intern Med 163:91–98. https://doi.org/10.7326/M15-0333

    Article  PubMed  Google Scholar 

  92. Jahfari S, Sarksyan DS, Kolyasnikova NM et al (2017) Evaluation of a serological test for the diagnosis of Borrelia miyamotoi disease in Europe. J Microbiol Methods 136:11–16. https://doi.org/10.1016/j.mimet.2017.02.013

    Article  PubMed  Google Scholar 

  93. Sato K, Takano A, Konnai S et al (2014) Human infections with Borrelia miyamotoi, Japan. Emerg Infect Dis 20:1391–1393. https://doi.org/10.3201/eid2008.131761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study financially supported by the Tabriz University of Medical Sciences, Tabriz, Iran (Grant No., 74063).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SZV, RKR, SMHKh, Data curation: RKR, SMHKh, Resources: SMH, Supervision: SMHKh, Writing-original draft: SZV, SP, RKR, SMHKh, Writing, review, and editing: SMH, SZV, SP, RKR, SMHKh.

Corresponding author

Correspondence to Seyed Mahdi Hosseiniyan Khatibi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hejazian, S.M., Pirmoradi, S., Zununi Vahed, S. et al. An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human. Protein J (2024). https://doi.org/10.1007/s10930-024-10190-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10190-4

Keywords

Navigation