Skip to main content
Log in

A Potential Involvement of Metallothionein in the Zinc Tolerance of Trichoderma harzianum: Experimental Findings

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Metallothioneins are a group of cysteine-rich proteins that play an important role in the homeostasis and detoxification of heavy metals. The objective of this research was to explore the significance of metallothionein in Trichoderma harzianum tolerance to zinc. At the inhibitory concentration of 1000 ppm, the fungus adsorbed 16.7 ± 0.4 mg/g of metal. The HPLC and SDS-PAGE electrophoresis data suggested that the fungus production of metallothionein was twice as high in the presence of zinc as in the control group. The examination of the genes; metallothionein expression activator (MEA) and Cu fist revealed that the MEA, with a C2H2 zinc finger domain, increased significantly in the presence of zinc. It was observed that in T. harzianum, the enhanced expression of the metallothionein gene was managed by the metallothionein activator under zinc overload conditions. According to our knowledge, this is the first report on the role of metallothionein in the resistance of T. harzianum to zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chibuike GU, Obiora SC (2014) Heavy Metal Polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  2. Sobolev D, Begonia MFT (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456. https://doi.org/10.3390/ijerph5050450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) In: Luch A (ed) Heavy metal toxicity and the Environment. Springer Basel, Basel, pp 133–164

    Google Scholar 

  4. Chojnacka K (2010) Biosorption and bioaccumulation - the prospects for practical applications. Environ Int 36:299–307. https://doi.org/10.1016/j.envint.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  5. Wuana RA, Okieimen FE (2011) Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. 2011:. https://doi.org/10.5402/2011/402647

  6. Singh S, Khajuria R (2018) Trichoderma spp. in Bioremediation Current Status and Scope. In: Sharma D, Saharan BS (eds) Microbial cell factories. CRC, pp 301–311

  7. Siddiquee S, Aishah SN, Azad SA et al (2013) Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3 + and Cu2 + by filamentous fungi (Trichoderma Harzianum, T. aureoviride and T. virens). Adv Biosci Biotechnol 04:570–583. https://doi.org/10.4236/abb.2013.44075

    Article  Google Scholar 

  8. Pócsi I (2011) Toxic Metal/Metalloid tolerance in Fungi—A biotechnology-oriented Approach. In: Banfalvi G (ed) Cellular effects of Heavy metals. Springer Netherlands, Dordrecht, pp 31–58

    Chapter  Google Scholar 

  9. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647. https://doi.org/10.1007/s00018-002-8454-2

    Article  CAS  PubMed  Google Scholar 

  10. Klaassen CD, Liu J, Choudhuri S (1999) METALLOTHIONEIN: an intracellular protein to protect against Cadmium Toxicity. Annu Rev Pharmacol Toxicol 39:267–294. https://doi.org/10.1146/annurev.pharmtox.39.1.267

    Article  CAS  PubMed  Google Scholar 

  11. Narender Reddy G, Prasad MNV (1990) Heavy metal-binding proteins/peptides: occurrence, structure, synthesis and functions. A review. Environ Exp Bot 30:251–264. https://doi.org/10.1016/0098-8472(90)90037-5

    Article  Google Scholar 

  12. Khodaveisi S (2016) Biosorption of heavy metals using fungi isolated from contaminated soils. Master’s thesis. Bu-Ali Sina University

  13. Yazdani M, Kong Y, Abdullah F, Tan S (2010) An in vitro study on the adsorption, absorption and uptake capacity of Zn by the Bioremediator Trichoderma atroviride. EnvironmentAsia 3:53–59. https://doi.org/10.14456/ea.2010.8

    Article  Google Scholar 

  14. López Errasquín E, Vázquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143. https://doi.org/10.1016/S0045-6535(02)00485-X

    Article  PubMed  ADS  Google Scholar 

  15. Yin G, Wang W, Sha S et al (2010) Inhibition and control effects of the ethyl acetate extract of Trichoderma Harzianum fermented broth against Botrytis Cinerea. Afr J Microbiol Res 4:1647–1653

    Google Scholar 

  16. Bridge PD, Kokubun T, Simmonds MSJ (2004) Protein extraction from Fungi. In: Cutler P (ed) Protein purification protocols. Methods in Molecular Biology. Humana, New Jersey, pp 37–46

    Google Scholar 

  17. Zheng Y, Shan XQ, Sun P, Jin LZ (1991) Metallothionein separation and analysis by reversed phase high performance liquid chromatography coupled with graphite furnace atomic absorption spectrometry. Chem Speciat Bioavailab 3:30–36. https://doi.org/10.1080/09542299.1991.11083138

    Article  CAS  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Alaei H, De Backer M, Nuytinck J et al (2009) Phylogenetic relationships of Puccinia Horiana and other rust pathogens of Chrysanthemum × morifolium based on rDNA ITS sequence analysis. Mycol Res 113:668–683. https://doi.org/10.1016/j.mycres.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  20. Argumedo-delira R, González-mendoza D, Alarcón A (2008) A rapid and versatile method for the isolation of total RNA from the filamentous fungus Trichoderma Sp. Ann Microbiol 58:761–763

    Article  CAS  Google Scholar 

  21. Puglisi I, Faedda R, Sanzaro V et al (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma Harzianum. Gene 506:325–330. https://doi.org/10.1016/j.gene.2012.06.091

    Article  CAS  PubMed  Google Scholar 

  22. Cacciola SO, Puglisi I, Faedda R et al (2015) Cadmium induces cadmium-tolerant gene expression in the filamentous fungus Trichoderma Harzianum. Mol Biol Rep 42:1559–1570. https://doi.org/10.1007/s11033-015-3924-4

    Article  CAS  PubMed  Google Scholar 

  23. Maldaner J, Steffen GPK, Missio EL et al (2020) Tolerance of Trichoderma isolates to increasing concentrations of heavy metals. Int J Environ Stud 00:1–13. https://doi.org/10.1080/00207233.2020.1778290

    Article  CAS  Google Scholar 

  24. Kacprzak M, Malina G (2005) The tolerance and Zn2+, Ba2 + and Fe3 + accumulation by Trichoderma atroviride and Mortierella exigua isolated from contaminated soil. Can J Soil Sci 85:283–290. https://doi.org/10.4141/S04-018

    Article  CAS  Google Scholar 

  25. Ryvolova M, Krizkova S, Adam V et al (2011) Analytical methods for Metallothionein Detection. Curr Anal Chem 7:243–261. https://doi.org/10.2174/1573411011107030243

    Article  CAS  Google Scholar 

  26. Jaeckel P, Krauss G, Menge S et al (2005) Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochem Biophys Res Commun 333:150–155. https://doi.org/10.1016/j.bbrc.2005.05.083

    Article  CAS  PubMed  Google Scholar 

  27. Courbot M, Diez L, Ruotolo R et al (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus paxillus involutus. Appl Environ Microbiol 70:7413–7417. https://doi.org/10.1128/AEM.70.12.7413-7417.2004

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Iturbe-espinoza P, Gil-moreno S, Lin W, Calatayud S (2016) The Fungus Tremella mesenterica Encodes the Longest Metallothionein Currently Known: Gene, Protein and Metal Binding Characterization. https://doi.org/10.1371/journal.pone.0148651

  29. Chatterjee S, Kumari S, Rath S et al (2020) Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 12:1637–1655. https://doi.org/10.1039/d0mt00140f

    Article  CAS  PubMed  Google Scholar 

  30. Hložková K, Matěnová M, Žáčková P et al (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita Strobiliformis. Fungal Biol 120:358–369. https://doi.org/10.1016/j.funbio.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  31. Averbeck NB, Borghouts C, Hamann A et al (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora Anserina. Mol Gen Genet 264:604–612. https://doi.org/10.1007/s004380000346

    Article  CAS  PubMed  Google Scholar 

  32. Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus suillus himalayensis and their role in metal tolerance. Microbiol (United Kingdom) 164:868–876. https://doi.org/10.1099/mic.0.000666

    Article  CAS  Google Scholar 

  33. Moenne A (2001) Eucaryotic metallothioneins: proteins, gene regulation and copper homeostasis. Cah Biol Mar 42:125–135

    Google Scholar 

  34. Münger K, Germann UA, Lerch K (1987) The Neurospora crassa metallothionein gene. Regulation of expression and chromosomal location. J Biol Chem 262:7363–7367. https://doi.org/10.1016/s0021-9258(18)48245-2

    Article  PubMed  Google Scholar 

  35. Ramesh G, Podila GK, Gay G et al (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma Cylindrosporum. Appl Environ Microbiol 75:2266–2274. https://doi.org/10.1128/AEM.02142-08

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Robinson JR, Isikhuemhen OS, Anike FN (2021) Fungal–metal interactions: a review of toxicity and homeostasis. J Fungi 7. https://doi.org/10.3390/jof7030225

  37. Leonhardt T, Sácký J, Šimek P et al (2014) Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus russula atropurpurea. Metallomics 6:1693–1701. https://doi.org/10.1039/C4MT00141A

    Article  CAS  PubMed  Google Scholar 

  38. Lorenzo-Gutiérrez D, Gómez-Gil L, Guarro J et al (2019) Role of the: Fusarium oxysporum metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics 11:1230–1240. https://doi.org/10.1039/c9mt00081j

    Article  CAS  PubMed  Google Scholar 

  39. Andrews GK (2000) Regulation of metallothionein gene expression. Biochem Pharmacol 59:95–104. https://doi.org/10.1016/S0079-6603(00)66034-8

    Article  CAS  PubMed  Google Scholar 

  40. Laity JH, Andrews GK (2007) Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 463:201–210. https://doi.org/10.1016/j.abb.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  41. Mei J, Wang L, Jiang X et al (2018) Functions of the C2H2 transcription factor gene thmea1 in trichoderma harzianum under copper stress based on transcriptome analysis. Biomed Res Int 2018. https://doi.org/10.1155/2018/8149682

  42. Fürst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705–717. https://doi.org/10.1016/0092-8674(88)90229-2

    Article  PubMed  Google Scholar 

  43. Furst P, Hamer D (1989) Cooperative activation of a eukaryotic transcription factor: Interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci U S A 86:5267–5271. https://doi.org/10.1073/pnas.86.14.5267

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Liu X, Jiang Y, He D et al (2020) Copper tolerance mediated by FgAceA and FgCrpA in Fusarium Graminearum. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.01392

    Article  CAS  Google Scholar 

  45. Fu K, Fan LL, Li Y et al (2012) Tmac1, a transcription factor which regulated high affinity copper transport in Trichoderma reesei. Microbiol Res 167:536–543. https://doi.org/10.1016/j.micres.2012.02.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Bu-Ali Sina University supported the investigation financially.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.M. and N.E.; methodology, formal analysis, and investigation, N.E., S.M., A.M. and M.C.; data curation, N.E. and S.M.; writing—original draft preparation, S.M.; writing—review and editing, N.E., S.M., A.M. and M.C.; supervision, S.M. and A.M.; funding acquisition, S.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Soheila Mirzaei.

Ethics declarations

Ethical Approval

During the preparation of this work the authors used ChatGPT in order to improve readability and language. After using this tool, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejmalian, N., Mirzaei, S., Mirzaie-Asl, A. et al. A Potential Involvement of Metallothionein in the Zinc Tolerance of Trichoderma harzianum: Experimental Findings. Protein J (2024). https://doi.org/10.1007/s10930-024-10185-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10185-1

Keywords

Navigation