Skip to main content

Advertisement

Log in

A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 μM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and β-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clemente M, Corigliano MG, Pariani AS, Sánchez-López EF, Sander VA, Ramos-Duarte VA (2019) Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int J Mol Sci 20(6):1345. https://doi.org/10.3390/ijms20061345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rawlings ND, Barrett AJ, Bateman A (2011) Asparagine peptide lyases: a seventh catalytic type of proteolytic enzymes. J Biol Chem 286(44):38321–38328. https://doi.org/10.1074/jbc.M111.260026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rawlings ND, Bateman A (2021) How to use the MEROPS database and website to help understand peptidase specificity. Protein Sci 30(1):83–92. https://doi.org/10.1002/pro.3948

    Article  CAS  PubMed  Google Scholar 

  4. Zhaoa J, Ee KY (2019) Protease inhibitors. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry, 1st edn. Elsevier, Amsterdam, pp 253–259. https://doi.org/10.1016/B978-0-08-100596-5.21749-6

    Chapter  Google Scholar 

  5. Cotabarren J, Lufrano D, Parisi MG, Obregón WD (2020) Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: a systematic review. Plant Sci 292:110398. https://doi.org/10.1016/j.plantsci.2019.110398

    Article  CAS  PubMed  Google Scholar 

  6. Bateman KS, James MNG (2011) Plant protein proteinase inhibitors: structure and mechanism of inhibition. Curr Prot Pept Sci 12:341–347. https://doi.org/10.3389/fpls.2018.00986

    Article  CAS  Google Scholar 

  7. Teixeira EMGF, Silva-López RE, Silva BRAD, Fontão APGA, Sampaio ALF (2021) Cajanus cajan (L.) Millsp aqueous extracts against melanoma cell line and their proteases. Eur J Med Plant 32(2):1–14. https://doi.org/10.9734/ejmp/2021/v32i230366

    Article  Google Scholar 

  8. Clemente A, Arques MC (2014) Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol 20:10305–10315. https://doi.org/10.3748/wjg.v20.i30.10305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shamsi TN, Parveen R, Ahamad S, Fatima S (2017) Structural and biophysical characterization of Cajanus cajan protease inhibitor. J Nat Sci Biol Med 8(2):186–192. https://doi.org/10.4103/0976-9668.210018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bendre AD, Ramasamy S, Suresh CG (2018) Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int J Biol Macromol 113:933–943. https://doi.org/10.1016/j.ijbiomac.2018.02.148

    Article  CAS  PubMed  Google Scholar 

  11. Hellinger R, Gruber CW (2019) Peptide-based protease inhibitors from plants. Drug Disc Today 24(9):1877–1889. https://doi.org/10.1016/j.drudis.2019.05.026

    Article  CAS  Google Scholar 

  12. Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Proc Nut. https://doi.org/10.1186/s43014-020-0020-5

    Article  Google Scholar 

  13. Srikanth S, Chen Z (2016) Plant protease inhibitors in therapeutics-focus on cancer therapy. Front Pharmacol 7:1–19. https://doi.org/10.3389/fphar.2016.00470

    Article  CAS  Google Scholar 

  14. Voshavar C (2019) Protease inhibitors for the treatment of HIV/AIDS: recent advances and future challenges. Curr Top Med Chem 19(18):1571–1598. https://doi.org/10.2174/1568026619666190619115243

    Article  CAS  PubMed  Google Scholar 

  15. Zając M, Muszalska I, Sobczak A, Dadej A, Tomczak S, Jelińska A (2019) Hepatitis C—new drugs and treatment prospects. Eur J Med Chem 165:225–249. https://doi.org/10.1016/j.ejmech.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  16. Helmer A, Slater N, Smithgall SA (2018) Review of ACE inhibitors and ARBs in black patients with hypertension. Ann Pharmacother 52(11):1143–1151. https://doi.org/10.1177/1060028018779082

    Article  CAS  PubMed  Google Scholar 

  17. Ni R, Neves MAD, Wu C, Cerroni SE, Flick MJ, Ni H, Weitz JI, Gross PL, Kim PY (2020) Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrin-dependent plasmin generation on thrombin-activated platelets. J Thromb Haemost 18(9):2364–2376. https://doi.org/10.1111/jth.14950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aggarwal NK, Subramanian A (2020) Antifibrinolytics and cardiac surgery: the past, the present, and the future. Ann Card Anaesth 23(2):193–199. https://doi.org/10.4103/aca.ACA_205_18

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gonçalves RN, Barbosa SDG, Silva-López RE (2016) Proteases from Canavalia ensiformis: active and thermostable enzymes with potential of application in biotechnology. Biotech Res Inter 2016:3427098. https://doi.org/10.1155/2016/3427098

    Article  CAS  Google Scholar 

  20. Shah D, Mital K (2018) The role of trypsin: chymotrypsin in tissue repair. Adv Ther 35(1):31–42. https://doi.org/10.1007/s12325-017-0648-y

    Article  CAS  PubMed  Google Scholar 

  21. Thibaudeau TA, Smith DM (2019) A practical review of proteasome pharmacology. Pharmacol Rev 71(2):170–197. https://doi.org/10.1124/pr.117.015370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garje R, An J, Obeidat M, Kumar K, Yasin HA, Zakharia Y (2020) Fibroblast growth factor receptor (FGFR) ihibitors in urothelial cancer. Oncologist 25(11):1711–1719. https://doi.org/10.1634/theoncologist.2020-0334

    Article  CAS  Google Scholar 

  23. Chang J, Chaudhuri O (2019) Beyond proteases: basement membrane mechanics and cancer invasion. J Cell Biol 218(8):2456–2469. https://doi.org/10.1083/jcb.201903066

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ogawa K, Lin Q, Li L, Bai X, Chen X, Chen H, Kong R, Wang Y, Zhu H, He F, Xu Q, Liu L, Li M, Zhang S, Nagaoka K, Carlson R, Safran H, Charpentier K, Sun B, Wands J, Dong X (2019) Aspartate beta-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway. J Hematol Oncol 12(1):144. https://doi.org/10.1186/s13045-019-0837-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong Y, Loessner D, Irving-Rodgers H, Obermair A, Nicklin JL, Clements JA (2014) Metastasis of ovarian cancer is mediated by kallikrein related peptidases. Clin Exp Metastasis 31(1):135–147. https://doi.org/10.1007/s10585-013-9615-4

    Article  CAS  PubMed  Google Scholar 

  26. Völker HU, Weigel M, Strehl A, Frey L (2018) Levels of uPA and PAI-1 in breast cancer and its correlation to Ki67-index and results of a 21-multigene-array. Diagn Pathol 13(1):67. https://doi.org/10.1186/s13000-018-0737-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ostrowski SM, Fisher DE (2021) Biology of melanoma. Hematol Oncol Clin North Am 35:29–56. https://doi.org/10.1016/j.hoc.2020.08.010

    Article  PubMed  Google Scholar 

  28. Rowsell C (2022) Refining the risk of lymph node metastasis in T1 colorectal adenocarcinoma. Gastroenterology 163(1):46–47. https://doi.org/10.1053/j.gastro.2022.04.049

    Article  PubMed  Google Scholar 

  29. Moro N, Mauch C, Zigrino P (2014) Metalloproteinases in melanoma. Eur J Cell Biol 93(1–2):23–29. https://doi.org/10.1016/j.ejcb.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17:868. https://doi.org/10.3390/ijms17060868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamenisch Y, Baban T, Schuller W, Thaler AV, Sinnberg T, Metzler G, Bauer J, Schittek B, Garbe C, Rocken M, Berneburg M (2016) UVA-irradiation induces melanoma invasion via the enhanced warburg effect. J Investigative Dermatol 136(9):1866–1875. https://doi.org/10.1016/j.jid.2016.02.815

    Article  CAS  Google Scholar 

  32. Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi M, Daraee H, Daraee N, Eatemadi R, Sadroddiny E (2017) Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother 86:221–231. https://doi.org/10.1016/j.biopha.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  33. Martin CE, List K (2019) Cell-surface anchored serine proteases in cancer progression and metastasis. Cancer Metastasis Rev 38(3):357–387. https://doi.org/10.1007/s10555-019-09811-7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sallai RC, Salu BR, Silva-Lucca RA, Alves FL, Napoleão TH, Paiva PMG, Ferreira RS, Sampaio MU, Oliva MLV (2020) Biotechnological potential of Araucaria angustifolia pine nuts extract and the cysteine protease inhibitor AaCI-2S. Plants 9(12):1676. https://doi.org/10.3390/plants9121676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA (2021) Drug current tatus and perspectives of protease inhibitors and their combination with nanosized drug delivery systems for targeted cancer therapy. Des Devel Ther 15:9–20. https://doi.org/10.2147/DDDT.S285852

    Article  Google Scholar 

  36. Im SY, Bonturi CR, Nakahata AM, Nakaie CR, Pott A, Pott VJ, Oliva MLV (2021) Differences in the inhibitory specificity distinguish the efficacy of plant protease inhibitors on mouse fibrosarcoma. Plants 10(3):602. https://doi.org/10.3390/plants10030602

    Article  CAS  Google Scholar 

  37. Orni PR, Ahmed SZ, Monefa M, Khan T, Dash PR (2018) Pharmacological and phytochemical properties of Cajanus cajan (L.) Huth. (Fabaceae): a review. Int J Pharm Sci Res 3(2):27–37

    Google Scholar 

  38. Rodríguez-Sifuentes L, Marszalek JE, Chuck-Hernández C, Serna-Saldívarc SO (2020) Legumes protease inhibitors as biopesticides and their defense mechanisms against biotic factors. Int J Mol Sci 21(9):3322. https://doi.org/10.3390/ijms21093322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Godbole SA, Krishna TG, Bhatia CR (1994) Purification and characterisation of protease inhibitors from pigeon pea (Cajanus cajan (l) millsp) seeds. J Sci Food Agric 64:87–93. https://doi.org/10.1002/jsfa.2740640113

    Article  CAS  Google Scholar 

  40. Haq SK, Khan RH (2003) Characterization of a proteinase inhibitor from Cajanus cajan (L.). J Protein Chem 22(6):543–554. https://doi.org/10.1023/b:jopc.0000005504.57372.5b

    Article  CAS  PubMed  Google Scholar 

  41. Prasad E, Merzendorfer H, Madhurarekha C, Dutta-Gupta A, Padmasree K (2010) Bowman-Birk proteinase inhibitor from Cajanus cajan seeds: purification, characterization and insecticidal properties. J Agric Food Chem 58(5):2838–2847. https://doi.org/10.1021/jf903675d

    Article  CAS  PubMed  Google Scholar 

  42. Prasad ER, Dutta-Gupta A, Padmasree K (2010) Insecticidal potential of Bowman-Birk proteinase inhibitors from red gram (Cajanus cajan) and black gram (Vigna mungo) against lepidopteran insect pests. Pesticide Biochem Physiol. 98(1):80–88. https://doi.org/10.1016/j.pestbp.2010.05.003

    Article  CAS  Google Scholar 

  43. Swathi M, Lokya V, Swaroop V, Mallikarjuna N, Kannan M, Dutta-Gupta A, Padmasree K (2014) Structural and functional characterization of proteinase inhibitors from seeds of Cajanus cajan (cv. ICP 7118). Plant Physiol Biochem 83:77–87. https://doi.org/10.4103/0976-9668.210018

    Article  CAS  PubMed  Google Scholar 

  44. Shaikh FK, Gadge PP, Padul MV, Kachole MS (2018) Subtilisin inhibitor like protein “ppLPI-1” from leaves of pigeonpea (Cajanus cajan, cv. BSMR 736) exhibits inhibition against Helicoverpa armigera gut proteinases. Biotech 8(1):19. https://doi.org/10.1007/s13205-017-1040-y

    Article  Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  46. Jones CG, Daniel Hare J, Compton SJ (1989) Measuring plant protein with the Bradford assay: 1. evaluation and standard method. J Chem Ecol 15(3):979–992. https://doi.org/10.1007/BF01015193

    Article  CAS  PubMed  Google Scholar 

  47. Salameh MA, Radisky ES (2013) Biochemical and structural insights into mesotrypsin: an unusual human trypsin. Int J Biochem Mol Biol 4(3):129–139

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Wingfield PT (2001) Protein precipitation using ammonium sulfate. Curr Protoc Prot Sci. https://doi.org/10.1002/0471140864.psa03fs13

    Article  Google Scholar 

  50. Silva-López RE, Coelho MG, De Simone SG (2005) Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis. Parasitology 131:85–96. https://doi.org/10.1017/S0031182004006675

    Article  CAS  PubMed  Google Scholar 

  51. Pacheco JS, Silva-López RE (2012) Study of the proteolytic activity of the tropical legume Crotalaria spectabilis. Z Naturforschung C 67:495–509. https://doi.org/10.1515/znc-2012-9-1008

    Article  CAS  Google Scholar 

  52. Murad A, Souza G, Garcia J, Rech E (2011) Characterisation and quantitation expression analysis of recombinant proteins in plant complex mixtures using nanoUPLC mass spectrometry. Protocol Exchange. https://doi.org/10.1038/protex.2011.216

    Article  Google Scholar 

  53. Dantzger M, Vasconcelos IM, Scorsato V, Aparicio R, Marangoni S, Macedo MLR (2015) Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: isolation, biochemical properties and insecticidal potential. Phytochemistry 118:224–225. https://doi.org/10.1016/j.phytochem.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  54. Gonçalves RN, Kalume DE, Ferrara MA, Silva-López RE (2021) A novel cucumisin-like serine protease from leaf of legume Canavalia ensiformis. J Plant Biochem Biotech 30:147–159. https://doi.org/10.1007/s13562-020-00578-5

    Article  CAS  Google Scholar 

  55. Moodley S, Koorbanally NA, Moodley T, Ramjugernath D, Pillay M (2014) The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay is a rapid, cheap, screening test for the in vitro anti-tuberculous activity of chalcones. J Microbiol Methods 104:72–78. https://doi.org/10.1016/j.mimet.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  56. Gadge P, Wagh SK, Shaikh FK, Tak RD, Padul MV, Kachole MS (2015) A bifunctional α-amylase/trypsin inhibitor from pigeonpea seeds: purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera. Pestic Biochem Physiol 125:17–25. https://doi.org/10.1016/j.pestbp.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  57. Arnaiz A, Talavera-Mateo L, Gonzalez-Melendi P, Martinez M, Diaz I, Santamaria ME (2018) Arabidopsis Kunitz trypsin inhibitors in defense against spider mites. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00986

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi H, Suzuki M, Kanayama N, Terao T (2004) A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. Clin Exp Metastasis 21(2):159–166. https://doi.org/10.1023/b:clin.0000024751.73174.c2

    Article  CAS  PubMed  Google Scholar 

  59. Fang FF, Wong JH, Ng TB (2010) Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. J Biosci Bioeng 109(3):211–217. https://doi.org/10.1016/j.jbiosc.2009.08.483

    Article  CAS  PubMed  Google Scholar 

  60. Nakahata AM, Bueno NR, Rocha HAO, Franco CRC, Chammas R, Nakaie CR, Jasiulionis MG, Nader HB, Santana LA, Sampaio MU, Oliva MLV (2006) Structural and inhibitory properties of a plant proteinase inhibitor containing the RGD motif. Int J Biol Macromol 40:22–29. https://doi.org/10.1016/j.ijbiomac.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  61. Calderon LA, Filho HAA, Teles RCL, Medrano FJ, Bloch C, Santoro MM, Freitas SM (2010) Purification and structural stability of a trypsin inhibitor from Amazon Inga cylindrica [Vell.] Mart. seeds Braz. J Plant Physiol 22(2):73–79. https://doi.org/10.1590/S1677-04202010000200001

    Article  Google Scholar 

  62. Dias LP, Oliveira JTA, Rocha-Bezerra LCB, Sousa DOB, Costa HPS, Araujo NMS, Carvalho AFU, Tabosa PMS, Monteiro-Moreira ACO, Lobo MDP, Moreno FB, Rocha BAM, Lopes JLS, Beltramini LM, Vasconcelos IM (2017) A trypsin inhibitor purified from Cassia leiandra seeds has insecticidal activity against Aedes aegypti. Process Biochem 57:228–238. https://doi.org/10.1016/j.proc.bio.2017.03.015

    Article  CAS  Google Scholar 

  63. Xu Y, Zhang P, Liu X, Wang Z, Li S (2020) Preparation and irreversible inhibition mechanism insight into a recombinant Kunitz trypsin inhibitor from Glycine max L. seeds. App Biochem Biotec 191:1207–1222

    Article  CAS  Google Scholar 

  64. Copeland RA (2005) Evaluation of enzyme inhibitors in drug discovery. Wiley

    Google Scholar 

  65. Goldenzweig A, Fleishman SJ (2018) Principles of protein stability and their application in computational design. Annu Rev Biochem 87:105–129. https://doi.org/10.1146/annurev-biochem-062917-012102

    Article  CAS  PubMed  Google Scholar 

  66. Silva-López RE, Morgado-Díaz J, dos Santos PT, De-Simone G (2008) Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 2:159–167. https://doi.org/10.1016/j.actatropica.2008.05.016

    Article  CAS  Google Scholar 

  67. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:9–23. https://doi.org/10.1016/S1359-0278(98)00002-9

    Article  Google Scholar 

  68. Shamanaev A, Emsley J, Gailani D (2021) Proteolytic activity of contact factor zymogens. J Thromb Haemost 19(2):330–341. https://doi.org/10.1111/jth.15149

    Article  CAS  PubMed  Google Scholar 

  69. Chakrabarty S, Kahler JP, van de Plassche MAT, Vanhoutte R, Verhelst SHL (2019) Recent advances in activity-based protein profiling of proteases. Curr Top Microbiol Immunol 420:253–281. https://doi.org/10.1007/82_2018_138

    Article  CAS  PubMed  Google Scholar 

  70. Napoli S, Scuderi C, Gattuso G, BellaVD CS, Basile MS, Libra M, Falzone L (2020) Functional roles of matrix metalloproteinases and their inhibitors in melanoma. Cells 9(5):1151. https://doi.org/10.3390/cells9051151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zamolo G, Grahovac M, Žauhar G, Vučinić D, Kovač L, Brajenić N, Grahovac B (2020) Matrix metalloproteinases MMP-1, MMP-2, and MMP-13 are overexpressed in primary nodular melanoma. J Cutan Pathol 47(2):139–145. https://doi.org/10.1111/cup.13603

    Article  PubMed  Google Scholar 

  72. Petricevic SJ, Pavlovic A, Capkun V, Becic K, Durdov MG (2017) Cathepsin K expression in melanoma is associated with metastases. Histol Histopathol 32(7):711–716. https://doi.org/10.14670/HH-11-833

    Article  CAS  PubMed  Google Scholar 

  73. Chen S, Dong H, Yang S, Guo H (2017) Cathepsins in digestive cancers. Oncotarget 8(25):41690–41700. https://doi.org/10.18632/oncotarget.16677

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kozlowski L, Wojtukiewicz MZ, Ostrowska H (2000) Cathepsin A activity in primary and metastatic human melanocytic tumors. Arch Dermatol Res 292(68–71):2000. https://doi.org/10.1007/s004030050012

    Article  Google Scholar 

  75. Piñeiro-Sánchez ML, Goldstein LA, Dodt J, Howard L, Yeh Y, Chen W (1997) Identification of the 170-kDa melanoma membrane-bound gelatinase (Seprase) as a serine integral membrane protease. J Biol Chem 272(12):7595–7601

    Article  PubMed  Google Scholar 

  76. Puré E, Blomberg R (2018) Pro-tumorigenic roles of fibroblast activation protein in cancer: back to the basics. Oncogene 37(32):4343–4357. https://doi.org/10.1038/s41388-018-0275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Altmann A, Haberkorn U, Siveke J (2021) The latest developments in imaging of fibroblast activation protein. J Nucl Med 62(2):160–167. https://doi.org/10.2967/jnumed.120.244806

    Article  CAS  PubMed  Google Scholar 

  78. Darmoul D, Lacasa M, Baricault L, Marguet D, Sapin C, Trotot P, Barbat A, Trugnan G (1992) Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2: cloning of the complete human coding sequence and changes of dipeptidyl peptidase IV mRNA levels during cell differentiation. J Biol Chem 267(7):4824–4833

    Article  CAS  PubMed  Google Scholar 

  79. Jalal F, Jumarie C, Bawab W, Corbeil D, Malo C, Berteloot A, Crine P (1992) Polarized distribution of neutral endopeptidase 24.11 at the cell surface of cultured human intestinal epithelial Caco-2 cells. Biochem J 288:945–951. https://doi.org/10.1042/bj2880945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruan P, Gu Y, Zhou H, Zhang W, Wang D, Liang J, Li C (2020) Expression and clinical significance of CD74 and MMP-9 in colon adenocarcinomas. J BUON 25(2):927–932

    PubMed  Google Scholar 

  81. Chen L, Ke X (2021) MMP7 as a potential biomarker of colon cancer and its prognostic value by bioinformatics analysis. Medicine 100(9):e24953. https://doi.org/10.1097/MD0000000000024953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kruszewski WJ, Rzepko R, Wojtacki J, Skokowski J, Kopacz A, Jaśkiewicz K, Drucis K (2004) Overexpression of cathepsin B correlates with angiogenesis in colon adenocarcinoma. Neoplasma 51(1):38–43

    CAS  PubMed  Google Scholar 

  83. Kim JT, Song EY, Chung KS, Kang MA, Kim JW, Kim SJ, Yeom YI, Kim JH, Kim KH, Lee HG (2011) Up-regulation and clinical significance of serine protease kallikrein 6 in colon cancer. Cancer 117(12):2608–2619. https://doi.org/10.1002/cncr.25841

    Article  CAS  PubMed  Google Scholar 

  84. Segel IH (2013) Enzyme kinetics. Encyclopedia of biological chemistry, 2nd edn. Elsevier, pp 216–220

    Chapter  Google Scholar 

  85. Silva-López RE (2010) Proteases de Leishmania: novos alvos para o desenvolvimento racional de fármacos. Quim Nova 33:1541–1548. https://doi.org/10.1590/S0100-40422010000700022

    Article  Google Scholar 

  86. Nelson DL, Cox MM (2017) Lehninger: principles of biochemistry, 7th edn. W. H Freeman, New York

    Google Scholar 

  87. Eijsink VG, Gåseidnes S, Borchert TV, Van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22(1–3):21–30. https://doi.org/10.1016/j.bioeng.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  88. Nakahata AM, Mayer B, Neth P, Hansen D, Sampaio MU, Oliva MLV (2013) Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds. Planta Med 79:227–235. https://doi.org/10.1055/s-0032-1328156

    Article  CAS  PubMed  Google Scholar 

  89. De Paula CA, de Abreu PM, Silva KT, de Sá RG, Carneiro CM, Castro-Borges M, Andrade MHG (2012) Bowman-Birk inhibitors, proteasome peptidase activities and colorectalpre neoplasias induced by 1,2-dimethylhydrazine in Swiss mice. Food Chem Toxicol 50:1405–1412. https://doi.org/10.1016/j.fct.2012.01.036

    Article  CAS  Google Scholar 

  90. Kobayashi H (2013) Prevention of cancer and inflammation by soybean protease inhibitors. Front Biosci 1:966–973. https://doi.org/10.2741/e676

    Article  Google Scholar 

  91. Troncoso MF, Biron VA, Longhi SA, Retegui LA, Wolfenstein-Todel C (2007) Peltophorum dubium and soybean Kunitz-type trypsin inhibitors induce human Jurkat cell apoptosis. Int Immunol Pharmacol 7:625–636. https://doi.org/10.1016/j.intimp.2007.01.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Valerio Morelli from Farmanguinhos/FIOCRUZ for supplying C. cajan, Elettra Greene for English review, Gabriela Arcanjo for review the references, and the Proteomics and Mass Spectrometry Unit platform (UEMP) at the Federal University of Rio de Janeiro (UFRJ) run by Dr. Russolina Zingali for support in the use of the license Mascot Server for protein identification searches; and UFRJ Pharmaceutical Science postgraduate program. Financial support was provided by Fundação Oswaldo Cruz (FIOCRUZ, PROEP CNPq/FARMANGUINHOS-407849/2017-8 and 407839/2017-8) and FAPERJ (Programa e Apoio a Projetos Temáticos no Estado do RJ- E-26/010.001478/2019).

Funding

Funding was provided by FIOCRUZ, PROEP CNPq/FARMANGUINHOS (Grant Nos. 407839/2017-8, 407849/2017-8) and FAPERJ, Programa e Apoio a Projetos Temáticos no Estado do RJ (Grant No. E-26/010.001478/2019).

Author information

Authors and Affiliations

Authors

Contributions

RESL designed the study, data analysis, wrote and revised the manuscript, and raised funds. EMGFT performed the experiments with protease inhibitor. DEK performed the EM assays, analyzed the data and revided the manuscript. PFF and TAA performed the experiments with cancer proteases. APGAF and ALFS supplied the melanoma cell and supernatants and did the cell cytotoxicity experiments, and raised funds. JAMD supplied the Caco-2 cell and supernatants, and raised funds. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raquel Elisa Silva-López.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, E.M.G.F., Kalume, D.E., Ferreira, P.F. et al. A Novel Trypsin Kunitz-Type Inhibitor from Cajanus cajan Leaves and Its Inhibitory Activity on New Cancer Serine Proteases and Its Effect on Tumor Cell Growth. Protein J (2024). https://doi.org/10.1007/s10930-023-10175-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-023-10175-9

Keywords

Navigation