Skip to main content

Advertisement

Log in

Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation

  • Published:
The Protein Journal Aims and scope Submit manuscript

A Correction to this article was published on 26 February 2024

This article has been updated

Abstract

Efficiently cleaved HIV-1 Envs are the closest mimics of functional Envs as they specifically expose only bNAb (broadly neutralizing antibody) epitopes and not non-neutralizing ones, making them suitable for developing vaccine immunogens. We have previously identified several efficiently cleaved Envs from clades A, B, C and B/C. We also described that truncation of the CT (C-terminal tail) of a subset of these Envs, but not others, impairs their ectodomain conformation/antigenicity on the cell surface in a CT conserved hydrophilic domain (CHD) or Kennedy epitope (KE)-dependent manner. Here, we report that those Envs (4 − 2.J41 and JRCSF), whose native-like ectodomain conformation/antigenicity on the cell surface is disrupted upon CT truncation, but not other Envs like JRFL, whose CT truncation does not have an effect on ectodomain integrity on the cell surface, are also defective in retrograde transport from early to late endosomes. Restoration of the CHD/KE in the CT of these Envs restores wild-type levels of distribution between early and late endosomes. In the presence of retrograde transport inhibitor Retro 2, cell surface expression of 4 − 2.J41 and JRCSF Envs increases [as does in the presence of Rab7a DN and Rab7b DN (DN: dominant negative)] but particle formation decreases for 4 − 2.J41 and JRCSF Env pseudotyped viruses. Our results show for the first time a correlation between CT-dependent, CHD/KE regulated retrograde transport and cell surface expression/viral particle formation of these efficiently cleaved Envs. Based on our results we hypothesize that a subset of these efficiently cleaved Envs use a CT-dependent, CHD/KE-mediated mechanism for assembly and release from late endosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Li Y, Migueles SA, Welcher B, Svehla K, Phogat A et al (2007) Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13:1032–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P et al (2009) Broad and potent neutralizing antibodies from an african donor reveal a new HIV-1 vaccine target. Science 326:285–289

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sather DN, Stamatatos L (2010) Epitope specificities of broadly neutralizing plasmas from HIV-1 infected subjects. Vaccine 28(Suppl 2):B8–12

    Article  CAS  PubMed  Google Scholar 

  4. Moore PL, Gray ES, Sheward D, Madiga M, Ranchobe N et al (2011) Potent and broad neutralization of HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in the V2 loop. J Virol 85:3128–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F et al (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–1637

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R et al (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–470

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hua CK, Ackerman ME (2017) Increasing the clinical potential and applications of Anti-HIV antibodies. Front Immunol 8:1655

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liao HX, Lynch R, Zhou T, Gao F, Alam SM et al (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD et al (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Pancera M, Wyatt R (2005) Selective recognition of oligomeric HIV-1 primary isolate envelope glycoproteins by potently neutralizing ligands requires efficient precursor cleavage. Virology 332:145–156

    Article  CAS  PubMed  Google Scholar 

  12. Yasmeen A, Ringe R, Derking R, Cupo A, Julien JP et al (2014) Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 env trimers, uncleaved env proteins, and monomeric subunits. Retrovirology 11:41

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boliar S, Das S, Bansal M, Shukla BN, Patil S et al (2015) An efficiently cleaved HIV-1 clade C env selectively binds to neutralizing antibodies. PLoS ONE 10:e0122443

    Article  PubMed  PubMed Central  Google Scholar 

  14. Das S, Boliar S, Mitra N, Samal S, Bansal M et al (2016) Membrane bound modified form of clade B env, JRCSF is suitable for immunogen design as it is efficiently cleaved and displays all the broadly neutralizing epitopes including V2 and C2 domain-dependent conformational epitopes. Retrovirology 13:81

    Article  PubMed  PubMed Central  Google Scholar 

  15. Das S, Boliar S, Samal S, Ahmed S, Shrivastava T et al (2017) Identification and characterization of a naturally occurring, efficiently cleaved, membrane-bound, clade a HIV-1 Env, suitable for immunogen design, with properties comparable to membrane-bound BG505. Virology 510:22–28

    Article  CAS  PubMed  Google Scholar 

  16. Das S, Bansal M, Bhattacharya J (2018) Characterization of the membrane-bound form of the chimeric, B/C recombinant HIV-1 env, LT5.J4b12C. J Gen Virol.

  17. Samal S, Bansal M, Das S (2019) Method to identify efficiently cleaved, membrane-bound, functional HIV-1 (human immunodeficiency Virus-1) envelopes. MethodsX 6:837–849

    Article  PubMed  PubMed Central  Google Scholar 

  18. Das S, Kumar R, Ahmed S, Parray HA, Samal S (2020) Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 8:2515135520957763

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Piller SC, Dubay JW, Derdeyn CA, Hunter E (2000) Mutational analysis of conserved domains within the cytoplasmic tail of gp41 from human immunodeficiency virus type 1: effects on glycoprotein incorporation and infectivity. J Virol 74:11717–11723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Day JR, Munk C, Guatelli JC (2004) The membrane-proximal tyrosine-based sorting signal of human immunodeficiency virus type 1 gp41 is required for optimal viral infectivity. J Virol 78:1069–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Breed MW, Jordan AP, Aye PP, Lichtveld CF, Midkiff CC et al (2013) Loss of a tyrosine-dependent trafficking motif in the simian immunodeficiency virus envelope cytoplasmic tail spares mucosal CD4 cells but does not prevent disease progression. J Virol 87:1528–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Postler TS, Desrosiers RC (2013) The tale of the long tail: the cytoplasmic domain of HIV-1 gp41. J Virol 87:2–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santos da Silva E, Mulinge M, Perez Bercoff D (2013) The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 10:54

    Article  CAS  PubMed  Google Scholar 

  24. Samal S, Das S, Boliar S, Qureshi H, Shrivastava T et al (2018) Cell surface ectodomain integrity of a subset of functional HIV-1 envelopes is dependent on a conserved hydrophilic domain containing region in their C-terminal tail. Retrovirology 15:50

    Article  PubMed  PubMed Central  Google Scholar 

  25. Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14:167–174

    Article  CAS  PubMed  Google Scholar 

  27. Blot G, Janvier K, Le Panse S, Benarous R, Berlioz-Torrent C (2003) Targeting of the human immunodeficiency virus type 1 envelope to the trans-golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol 77:6931–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Groppelli E, Len AC, Granger LA, Jolly C (2014) Retromer regulates HIV-1 envelope glycoprotein trafficking and incorporation into virions. PLoS Pathog 10:e1004518

    Article  PubMed  PubMed Central  Google Scholar 

  29. Berlioz-Torrent C, Shacklett BL, Erdtmann L, Delamarre L, Bouchaert I et al (1999) Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins. J Virol 73:1350–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wyss S, Berlioz-Torrent C, Boge M, Blot G, Honing S et al (2001) The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor [correction of adapter]. J Virol 75:2982–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Byland R, Vance PJ, Hoxie JA, Marsh M (2007) A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell 18:414–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forrester A, Rathjen SJ, Daniela Garcia-Castillo M, Bachert C, Couhert A et al (2020) Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nat Chem Biol 16:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanatsu K, Hori Y, Ebinuma I, Chiu YW, Tomita T (2018) Retrograde transport of gamma-secretase from endosomes to the trans-golgi network regulates Abeta42 production. J Neurochem 147:110–123

    Article  CAS  PubMed  Google Scholar 

  34. Maru S, Jin G, Desai D, Amin S, Shwetank et al (2017) Inhibition of Retrograde Transport Limits Polyomavirus Infection In Vivo. mSphere 2

  35. de Araujo ME, Lamberti G, Huber LA (2015) Homogenization of mammalian cells. Cold Spring Harb Protoc 2015:1009–1012

    Article  PubMed  Google Scholar 

  36. de Araujo ME, Lamberti G, Huber LA (2015) Isolation of early and late endosomes by Density Gradient Centrifugation. Cold Spring Harb Protoc 2015:1013–1016

    Article  PubMed  Google Scholar 

  37. Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131:1435–1452

    Article  CAS  PubMed  Google Scholar 

  38. Progida C, Cogli L, Piro F, De Luca A, Bakke O et al (2010) Rab7b controls trafficking from endosomes to the TGN. J Cell Sci 123:1480–1491

    Article  CAS  PubMed  Google Scholar 

  39. Das S, Cano J, Kalpana GV (2009) Multimerization and DNA binding properties of INI1/hSNF5 and its functional significance. J Biol Chem 284:19903–19914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sorin M, Cano J, Das S, Mathew S, Wu X et al (2009) Recruitment of a SAP18-HDAC1 complex into HIV-1 virions and its requirement for viral replication. PLoS Pathog 5:e1000463

    Article  PubMed  PubMed Central  Google Scholar 

  41. Freed EO, Myers DJ, Risser R (1989) Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol 63:4670–4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma M, Burd CG (2020) Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 21:45–59

    Article  CAS  PubMed  Google Scholar 

  43. Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC (2010) Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes. PLoS ONE 5:e15261

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Yue X, Gim B, Zhu L, Tan C, Qian Y et al (2022) Retro-2 alters golgi structure. Sci Rep 12:14975

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verani A, Gras G, Pancino G (2005) Macrophages and HIV-1: dangerous liaisons. Mol Immunol 42:195–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bimal Chakrabarti, ex-Program Director, THSTI-IAVI HIV Vaccine Design Program, Translational Health Science and Technology Institute, India for helpful discussions.

Funding

This work was supported primarily by IAVI intramural research, as well as by the Department of Biotechnology (DBT), Govt. of India intramural research program and its generous donors. IAVI’s work is made possible by generous support from many donors including: the Bill & Melinda Gates Foundation; the Ministry of Foreign Affairs of Denmark; Irish Aid; the Ministry of Finance of Japan; the Ministry of Foreign Affairs of the Netherlands; the Norwegian Agency for Development Cooperation (NORAD); the United Kingdom Department for International Development (DFID), and the United States Agency for International Development (USAID). The full list of IAVI donors is available at www.iavi.org. This study is made possible by the generous support of the American people through USAID. The contents are the responsibility of the International AIDS Vaccine Initiative and do not necessarily reflect the views of USAID or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

S.D. designed, directed, carried out a majority of experiments and wrote the manuscript. H.A.P. carried out the p24 ELISA experiments. AKC carried out the western blot experiment for Fig. 6. P.K. carried out the western blot analysis of Fig. 2B. A.G. assisted with experiments. M.B. generated reagents. D.K.R. carried out analysis of FACS data. R.K. revised the manuscript. S.S. designed Fig. 7.All authors reviewed the manuscript.

Corresponding author

Correspondence to Supratik Das.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the wrong figures 2, 3, 4, 5, 6 and 7 and the wrong supplementary figures 1, 2 and 3 has been corrected.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Parray, H.A., Chiranjivi, A.K. et al. Kennedy Epitope (KE)-dependent Retrograde Transport of Efficiently Cleaved HIV-1 Envelopes (Envs) and its Effect on Env Cell Surface Expression and Viral Particle Formation. Protein J (2023). https://doi.org/10.1007/s10930-023-10161-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-023-10161-1

Keywords

Navigation